Skip to main content

Application of the Optoacoustic Method to Assess the Effect of Voids on the Crack Resistance of Structural Carbon Plastics


The results of an experimental analysis of the effect of the volume content of voids in the range of 0.25–5% on the crack resistance of structural carbon plastics are presented. To obtain a variation of the volume content of voids, samples were manufactured using the vacuum-infusion method with variations in the vacuum strength from –760 to –150 mm Hg. The total volume content of voids was determined by methods of optoacoustic structuroscopy, scanning electron microscopy, and chemical etching to obtain comparative data. The experimental dependences of the characteristics of the interlaminar crack resistance on the volume content of voids under static and cyclic loading of samples in the normal-separation mode were obtained.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. M. Mehdikhani, L. Gorbatikh, I. Verpoest, and S. Lomov, J. Compos. Mater. 53 (12), 1579 (2019).

    Article  ADS  Google Scholar 

  2. M. I. Dushin, K. I. Donetskii, and R. Yu. Karavaev, Tr. Vseross. Inst. Aviats. Mater. 6 (42), 66 (2016).

    Google Scholar 

  3. S. L. Agius and B. L. Fox, Composites, Part A 73 (6), 186 (2015).

    Article  Google Scholar 

  4. F. Gehrig, E. Mannov, and K. Schulte, in Proc. Int. Conference on Composite Materials (Edinburgh, 2009).

  5. I. A. Hakim, S. L. Donaldson, N. G. Meyendorf, and C. E. Browning, Mater. Sci. Appl. 8 (2), 170 (2017).

    Google Scholar 

  6. L. Maragoni, P. A. Carraro, and M. Quaresimin, Composites, Part A 91, 493 (2016).

    Article  Google Scholar 

  7. P. Olivier, B. Mascaro, and P. Margueres, in Proc. 16th Int. Conference on Composite Materials (ICCM16) (Kyoto, July 8–13, 2007).

  8. A. A. Karabutov and N. B. Podymova, Acoust. Phys. 63 (3), 288 (2017).

    Article  ADS  Google Scholar 

  9. A. A. Karabutov, N. B. Podymova, and I. O. Belyaev, Acoust. Phys. 59 (6), 667 (2013).

    Article  ADS  Google Scholar 

  10. A. Yu. Devichenskii, A. M. Lomonosov, S. E. Zharinov, V. G. Mikhalevich, M. L. Lyamshev, T. O. Ivanova, and N. S. Merkulova, Acoust. Phys. 55 (1), 61 (2009).

    Article  ADS  Google Scholar 

  11. A. A. Davydov and L. M. Lyamshev, Acoust. Phys. 47 (1), 50 (2001).

    Article  ADS  Google Scholar 

  12. ASTM No. D5528-01: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites (ASTM International, West Conshohocken, PA, 2010), Ver. 01. Reapproved 2007, p. 1.

  13. Yu. G. Sokolovskaya, A. N. Zharinov, and A. A. Karabutov, Kontrol. Diagn., No. 9, 48 (2018).

  14. Yu. G. Sokolovskaya, N. B. Podymova, and A. A. Karabutov, Akust. Zh. 65 (1), 114 (2019).

    Google Scholar 

  15. ASTM No. D3171-15: Standard Test Methods for Constituent Content of Composite Materials (ASTM International, West Conshohocken, PA, 2015).

  16. A. A. Karabutov, N. B. Podymova, and Yu. G. Sokolovskaya, Acoust. Phys. 65 (2), 158 (2019).

    Article  ADS  Google Scholar 

  17. A. A. Karabutov, RF Patent No. 2381496 (2010).

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. I. Vorobyev.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobyev, R.I., Sergeichev, I.V., Karabutov, A.A. et al. Application of the Optoacoustic Method to Assess the Effect of Voids on the Crack Resistance of Structural Carbon Plastics. Acoust. Phys. 66, 132–136 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: