Skip to main content
Log in

The Distribution of Air-coupled Transducer Energy Among the Traveling Waves Excited in a Submerged Elastic Waveguide

  • CLASSICAL PROBLEMS OF LINEAR ACOUSTICS AND WAVE THEORY
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract—

The distribution of the wave energy transmitted by a contactless ultrasonic piezoelectric transducer into the environment among the reflected, transmitted, and guided waves excited when sounding an immersed elastic plate is studied. The dependence of the time-averaged amount of wave energy transferred by each of the excited wave of different types (acoustic bulk waves, Lamb waves, and Scholte-Stoneley waves) on the relative source size, its distance to the plate, and frequency as well as a spatial structure of energy fluxes are analyzed. The numerical study is carried out in the framework of a semi-analytical model based on the integral and asymptotic representations for the Green function of the coupled problem under consideration. The plots of the wave energy dependence on the input parameters indicate the existence of local maxima (sweet spots) of the excited traveling waves that do not coincide with the maxima of the total source power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. V. Giurgiutiu, Structural Health Monitoring with Piezoelectric Wafer Active Sensors, 2nd ed. (Elsevier Academic Press, Oxford, 2014).

    Google Scholar 

  2. R. Lammering, U. Gabbert, M. Sinapius, Th. Schuster, and P. Wierach, Lamb-Wave Based Structural Health Monitoring in Polymer Composites (Springer, 2018).

    Book  Google Scholar 

  3. M. Masmoudi and M. Castaings, Ultrasonics 52 (1), 81 (2012).

    Article  Google Scholar 

  4. V. Giurgiutiu, J. Intell. Mater. Syst. Struct. 16, 291 (2005).

    Article  Google Scholar 

  5. A. Raghavan and C. E. S. Cesnik, Smart Mater. Struct. 14, 1448 (2005).

    Article  ADS  Google Scholar 

  6. E. V. Glushkov, N. V. Glushkova, A. A. Eremin, R. Lammering, and M. Neumann, Smart Mater. Struct. 20 (1), 015020 (2011).

    Article  ADS  Google Scholar 

  7. E. V. Glushkov, N. V. Glushkova, and A. A. Evdokimov, J. Appl. Mech. Tech. Phys. 56 (6), 1007 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  8. W. Grandia and C. Fortunko, in Proc. IEEE Ultrasonic Symposium (Seattle, WA, 1995), Vol. 1, p. 697.

  9. R. E. Green, Ultrasonics 42, 9 (2004).

    Article  Google Scholar 

  10. Z. Fan, W. Jiang, M. Cai, and W. M. D. Wright, Ultrasonics 65, 282 (2016).

    Article  Google Scholar 

  11. A. Huber, in Proc. 19th World Conference on Non-Destructive Testing (WCNDT 2016) (Munich, June 13–17, 2016).

  12. W. Adebahr, Y. Bernhardt, and M. Kreutzbruck, in Proc. 19th World Conference on Non-Destructive Testing (WCNDT 2016) (Munich, June 13–17, 2016).

  13. M. C. Junger and D. Feit, Sound Structures and their Interaction, 2nd ed. (MIT Press, Boston, MA, 1986).

    MATH  Google Scholar 

  14. D. Ross, Mechanics of Underwater Noise (Pergamon Press, New York, 1976).

    Google Scholar 

  15. R. H. Lyon, Theory and Application of Statistical Energy Analysis, 2nd ed. (Elsevier, 1994).

    Google Scholar 

  16. E. L. Shenderov, Emission and Scattering of Sound (Sudostroenie, Leningrad, 1989) [in Russian].

    Google Scholar 

  17. A. A. Averbukh, R. I. Veitsman, and M. D. Genkin, Oscillations of Structure Elements in Liquid (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  18. V. T. Grinchenko and I. V. Vovk, Wave Problems on Sound Scattering at Elastic Shells (Naukova Dumka, Kiev, 1986) [in Russian].

    Google Scholar 

  19. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics, 2nd ed. (Springer, 2011).

    Book  Google Scholar 

  20. L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  21. E. V. Glushkov, Prikl. Mat. Mekh. 47 (1), 94 (1983).

    Google Scholar 

  22. E. Glushkov, N. Glushkova, and S. Fomenko, J. Acoust. Soc. Am. 137 (4), 1802 (2015).

    Article  ADS  Google Scholar 

  23. I. I. Vorovich and V. A. Babeshko, Dynamic Mixed Problems on Theory of Elasticity for Non-Classical Fields (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  24. D. G. Crighton, J. Sound Vib. 133 (1), 1 (1989).

  25. E. V. Glushkov, N. V. Glushkova, S. I. Fomenko, and C. Zhang, Acoust. Phys. 58 (3), 339 (2012).

    Article  ADS  Google Scholar 

  26. E. V. Glushkov, N. V. Glushkova, and O. A. Miakisheva, Ultrasonics 92, 158 (2019).

    Article  Google Scholar 

  27. M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  28. A. G. Sveshnikov, Dokl. Akad. Nauk SSSR 80 (3), 345 (1951).

    Google Scholar 

  29. L. M. Brekhovskikh, Usp. Fiz. Nauk 38 (5), 1 (1949).

    Article  Google Scholar 

  30. S. A. Titov, R. G. Maev, and A. N. Bogachenkov, Acoust. Phys. 63 (5), 583 (2017).

    Article  ADS  Google Scholar 

  31. E. V. Glushkov, N. V. Glushkova, A. A. Eremin, and O. A. Miakisheva, Mater. Phys. Mech. (2019) (in press).

  32. M. F. M. Osborne and S. D. Hart, J. Acoust. Soc. Am. 17 (1S), 1 (1945).

    Article  ADS  Google Scholar 

  33. J.-P. Sessarego, J. Sagéloli, C. Gazanhes, and H. Überall, J. Acoust. Soc. Am. 101 (1), 135 (1997).

    Article  ADS  Google Scholar 

  34. C. Shen, F. X. Xin, and T. J. Lu, J. Acoust. Soc. Am. 135 (5), EL232-8 (2014).

    Article  ADS  Google Scholar 

  35. M. Aanes, K. Lohne, P. Lunde, and M. Vestrheim, J. Acoust. Soc. Am. 140, EL67 (2016).

    Article  ADS  Google Scholar 

  36. H. Lamb, Proc. R. Soc. London, Ser. A 93, 114 (1917).

    ADS  Google Scholar 

  37. L. G. Merkulov, Akust. Zh. 10 (2), 206 (1964).

    Google Scholar 

  38. S. I. Rokhlin, D. E. Chimenti, and A. H. Nayfeh, J. Acoust. Soc. Am. 85 (3), 1074 (1989).

    Article  ADS  Google Scholar 

  39. D. Inoue and T. Hayashi, Ultrasonics 62, 80 (2015).

    Article  Google Scholar 

  40. N. A. Umov, Selected Scientific Works (Gostekhizdat, Moscow, 1950) [in Russian].

    Google Scholar 

  41. N. D. Veksler, Resonance Acoustic Spectroscopy (Springer, Berlin, 1993).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Glushkov or O. A. Miakisheva.

Ethics declarations

The work is supported by the Russian Science Foundation (Project no. 17-11-01191).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushkov, E.V., Glushkova, N.V. & Miakisheva, O.A. The Distribution of Air-coupled Transducer Energy Among the Traveling Waves Excited in a Submerged Elastic Waveguide. Acoust. Phys. 65, 623–633 (2019). https://doi.org/10.1134/S1063771019060034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019060034

Keywords:

Navigation