Skip to main content
Log in

Studies of Spatiotemporal Structure of the Acoustic Field Formed in Deep Water by a Broadband Pulsed Signal Source on the Shelf of the Sea of Japan

  • OCEAN ACOUSTICS. HYDROACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The article discusses the results of experiments conducted in September 2017 to prove the applicability of positioning underwater objects during their operation at depths substantially exceeding the depth of the underwater sound channel axis. The authors present results of experimental studies and numerical analysis of the effect of focusing of the acoustic energy in the near-bottom layer on the shelf and its transition into deep-water (up to 500 m) layers of the Sea of Japan for summer–autumn hydrological conditions. Experiments on reception of broadband pulsed signals with a center frequency of 400 Hz were carried out at various distances (20, 68, 86, 90, and 198 km) from a source of navigation signals moored at a depth of 35 m at the shoreline near Cape Schulz. The receiving of acoustic signals was performed by a system of distributed over depth up to 500 meters hydrophones, with the possibility of long-term signal recording at fixed depths and during submergence. The experimental results allowed to study the impulse responses of acoustic waveguides, and estimate the effective propagation velocities of navigation signals received at different depths, and to draw conclusions about the possibility of solving positioning problems for autonomous underwater vehicles at depths up to 500 m and distances up to 200 km from the source of navigation signals. Mathematical modeling of acoustic wave propagation in a waveguide reproducing the experimental conditions by the normal mode technique was also carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yu. N. Morgunov, A. A. Tagil’tsev, V. V. Bezotvetnykh, A. V. Burenin, and A. A. Golov, RF Patent No. 2469346, Byull. Izobret., No. 34 (2012).

  2. F. D. Tappert, J. L. Spiesberger, and M. A. Wolfson, J. Acoust. Soc. Am. 111, 757 (2002).

    Article  ADS  Google Scholar 

  3. R. C. Spindel, J. Na, P. H. Dahl, S. Oh, C. Eggen, Y. G. Kim, V. A. Akulichev, and Y. N. Morgunov, IEEE J. Oceanic Eng. 28 (2), 297 (2003).

    Article  ADS  Google Scholar 

  4. V. V. Bezotvetnykh, A. V. Burenin, Yu. N. Morgunov, and Yu. A. Polovinka, Acoust. Phys. 55 (3), 376 (2009).

    Article  ADS  Google Scholar 

  5. Yu. N. Morgunov, V. V. Bezotvetnykh, A. V. Burenin, and E. A. Voitenko, Acoust. Phys. 62 (3), 350 (2016).

    Article  ADS  Google Scholar 

  6. V. A. Akulichev, V. V. Bezotvetnykh, A. V. Burenin, E. A. Voitenko, and Yu. N. Morgunov, Acoust. Phys. 56 (1), 47 (2010).

    Article  ADS  Google Scholar 

  7. V. A. Akulichev, S. I. Kamenev, and Yu. N. Morgunov, Dokl. Earth Sci. 427 (5), 837 (2009).

    Article  ADS  Google Scholar 

  8. Yu. N. Morgunov, V. V. Bezotvetnykh, A. V. Burenin, E. A. Voitenko, and A. A. Golov, Acoust. Phys. 64 (2), 190 (2018).

    Article  ADS  Google Scholar 

  9. V. A. Akulichev, V. V. Bezotvetnykh, Yu. N. Morgunov, and Yu. A. Polovinka, Dokl. Earth Sci. 432 (2), 775 (2010).

    Article  ADS  Google Scholar 

  10. V. A. Akulichev, Yu. V. Matvienko, Yu. N. Morgunov, Yu. A. Polovinka, and R. N. Rylov, Dokl. Earth Sci. 433 (1), 982 (2010).

    Article  ADS  Google Scholar 

  11. V. V. Bezotvetnykh, V. A. Kartavenko, and Yu. N. Morgunov, Instrum. Exp. Tech. 56 (1), 99 (2013).

    Article  Google Scholar 

  12. F. B. Jensen, M. B. Porter, W. A. Kuperman, and H. Schmidt, Computational Ocean Acoustics (Springer, New York, 2000).

    MATH  Google Scholar 

  13. B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics, Ed. by J. A. Simmen (Springer, New York, 2012).

    Book  Google Scholar 

  14. P. S. Petrov, S. A. Sergeev, and A. A. Tolchennikov, Russ. J. Math. Phys. 25 (1), 102 (2018).

    Article  MathSciNet  Google Scholar 

  15. Yu. N. Morgunov, A. V. Burenin, V. V. Bezotvetnykh, and A. A. Golov, Acoust. Phys. 63 (6), 681 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This study partially supported by grants of the Far Eastern Branch of the Russian Academy of Sciences 15-II-1-046, 15-I-012 о, and the Basic Research Program of State Academies of Sciences for 2013–2020 (topic AAAA-A17-117030 110041-5 2017-219).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Golov or P. S. Petrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgunov, Y.N., Golov, A.A., Burenin, A.V. et al. Studies of Spatiotemporal Structure of the Acoustic Field Formed in Deep Water by a Broadband Pulsed Signal Source on the Shelf of the Sea of Japan. Acoust. Phys. 65, 537–544 (2019). https://doi.org/10.1134/S1063771019050166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019050166

Keywords:

Navigation