Skip to main content
Log in

Subarray Beam-space Adaptive Beamforming Combined with Array Shape Estimation based on Non-Acoustic Sensor

  • ACOUSTIC SIGNALS PROCESSING. COMPUTER SIMULATION
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

To address the issue of serious decline in performance of the array signal processing caused by the towed array shape distortion during maneuvering, this paper presents a new method of subarray beam-space adaptive beamforming combined with an array shape estimation method based on non-acoustic sensor. Firstly, the array shape through the approximate circular arc structure of the array segment between the adjacent sensor during maneuvering is preliminary calculated. Next, the final estimated array shape through a smooth processing method on the entire array shape by means of a calibration method using spline interpolation technique is achieved. This method is able to estimate the array shape in real time. The array steering vector based on the real-time estimation of the array shape is updated, using a subarray beam-space adaptive beamforming (SBABF) to reduce the demand of the number of the snapshots. And the beam-space covariance matrix converges fast within a few snapshots. The SBABF method combined with array shape estimation (AE-SBABF) was verified by simulation data and sea trial data processing results. During maneuvering, the AE-SBABF can not only improve the array processing gain of the target effectively, but also solve the left/right ambiguity problem well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. V. A. Zverev and P. I. Korotin, Acoust. Phys. 61 (6), 724 (2015).

    Article  ADS  Google Scholar 

  2. W. S. Hodgkiss, IEEE J. Oceanic Eng. 8 (3), 120 (1983).

    Article  ADS  Google Scholar 

  3. D. M. Caveny, D. R. D. Balzo, J. Leclere, and G. E. Loup, J. Acoust. Soc. Am. 80 (4), 2203 (1998).

    Google Scholar 

  4. N. Ma and J. T. Goh, Oceans 3 (1), 1895 (2000).

    Google Scholar 

  5. G. S. Malyshkin, A. S. Kuznetsova, and G. B. Sidel’nikov, Acoust. Phys. 62 (2), 235 (2016).

    Article  ADS  Google Scholar 

  6. B. G. Ferguson, D. A. Gray, and J. L. Riley, J. Acoust. Soc. Am. 91 (3), 1565 (1992).

    Article  ADS  Google Scholar 

  7. J. J. Smith, Y. H. Leung, and A. Cantoni, IEEE Trans. Signal Process. 44 (4), 1033 (1996).

    Article  ADS  Google Scholar 

  8. J. L. Riley and D. A. Gray, IEEE J. Oceanic Eng. 18 (4), 572 (1993).

    Article  Google Scholar 

  9. J. L. Odom and J. L. Krolik, IEEE J. Oceanic Eng. 40 (2), 465 (2015).

    Article  ADS  Google Scholar 

  10. F. Lu, E. Milios, S. Stergiopoulos, and A Dhanantwari, IEEE J. Oceanic Eng. 28 (3), 552 (2003).

    Article  ADS  Google Scholar 

  11. P. Felisberto, S. M. Jesus, IEE Proc.–Radar, Sonar Navig. 143 (3), 210 (1996).

    Article  Google Scholar 

  12. P. Gerstoft, W. S. Hodgkiss, W. A. Kuperman, H. Song, M. Siderius, and P. L. Nielsen, IEEE J. Oceanic Eng. 28(1), 44 (2003).

    Article  ADS  Google Scholar 

  13. H. Y. Park, D. H. Youn, C. Lee, H. W. Kang, K. M. Kim, and K. C. Dho, Oceans 2 (2), 593 (2004).

    Google Scholar 

  14. E. N. Kalenov, Acoust. Phys. 61 (2), 205 (2015).

    Article  ADS  Google Scholar 

  15. Y. P. Lee, H. Freese, and W. W. Lee, in Proc. IEEE ASAP 2004, 12th Annual Workshop on Adaptive Sensor Array Processing (Massachusetts Institute of Technology, Cambridge, MA, March 16–18, 2004).

  16. S. J. Chern and C. Y. Chang, IEEE Trans. Antennas Propag. 50 (8), 1138 (2002).

    Article  ADS  Google Scholar 

  17. H. Cox and H. Lai, in Proc. 38th Asilomar Conference on Signals, Systems and Computers (IEEE Press, 2004), Vol. 2, Issue 2, p. 2355

  18. Y. Doisy, L. Deruaz, and R. Been, IEEE Trans. Signal Process. 58 (8), 4195 (2010).

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was founded by Young Elite Scientists Sponsorship Program by CAST (Grant no. 2017QNRC001) and the National Natural Science Foundation of China (Grant no. 61701450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhou, B., Chen, Y. et al. Subarray Beam-space Adaptive Beamforming Combined with Array Shape Estimation based on Non-Acoustic Sensor. Acoust. Phys. 65, 226–233 (2019). https://doi.org/10.1134/S1063771019020106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771019020106

Keywords:

Navigation