Mapping Microbubble and Ultrasound Spatio-temporal Interaction by M-mode Imaging: The Study of Feasibility


Ultrasound (US) and microbubble (MB) interaction is an important factor in the research of bioacoustics, as well as targeted drug and gene delivery. In this study, we demonstrate the feasibility of pulse−echo M-mode imaging system to be used for the visualization and quantification of US–MB interaction in both spatial and temporal dimensions. The system incorporates an exposure chamber with the cell–MB suspension, a 2.7 MHz focused US transducer, a US pulser–receiver and the customized LabView software. The results of cell and MB interaction obtained after M-mode image analysis have showed the US–MB interaction to be non-uniform in space and non-stationary in time. In order to quantify the spatio-temporal US–MB interaction, we have introduced the time function of spatial homogeneity dynamics. We have observed that the effective duration of interaction can be characterized at the predefined threshold of spatial homogeneity. For example, at the US excitation of 360 kPa peak negative pressure (15 bursts transmitted at 80 Hz pulse repetition frequency), the US–MB interaction persists for more than 5 seconds in the range at 4 mm depth of the exposure chamber with more than 50% of homogeneity. The system proposed in this assay is feasible for the characterization of US–MB interaction and can be exploited to optimize the MB concentration and/or the US excitation parameters.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    R. Karshafian, P. D. Bevan, R. Williams, S. Samac, and P. N. Burns, Ultrasound Med. Biol. 35 (5), 847 (2009).

    Article  Google Scholar 

  2. 2

    T. A. Tran, J. Y. Le Guennec, P. Bougnoux, F. Tranquart, and A. Bouakaz, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 55 (1), 43 (2008).

    Article  Google Scholar 

  3. 3

    W. G. Pitt, G. A. Husseini, and B. J. Staples, Expert Opin. Drug Delivery 1 (1), 37 (2004).

    Article  Google Scholar 

  4. 4

    P. Marmottant and S. Hilgenfeldt, Nature 423, 153 (2003).

    ADS  Article  Google Scholar 

  5. 5

    A. A. Anosov, O. J. Nemcenko, J. A. Less, A. S. Kazanskij, and A. D. Mansfeld, Acoust. Phys. 61 (4), 535 (2015).

    Article  Google Scholar 

  6. 6

    P. A. Prentice, D. McLean, A. Cuschieri, K. Dholakia, M. R. Prausnitz, and P. Campbell, Nat. Phys. 1, 107 (2005).

    Article  Google Scholar 

  7. 7

    C. C. Coussios and R. A. Roy, Annu. Rev. Fluid Mech. 40, 395 (2008).

    ADS  Article  Google Scholar 

  8. 8

    V. M. Polunin, I. A. Shabanova, G. V. Karpova, N. S. Kobelev, K. S. Ryabtsev, V. B. Platonov, and I. M. Arefev, Acoust. Phys. 61 (4), 416 (2015)

    ADS  Article  Google Scholar 

  9. 9

    T. Li, T. D. Khokhlova, O. A. Sapozhnikov, M. O’Donnell, and J. H. Hwang, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 61 (10), 1698 (2014).

    Article  Google Scholar 

  10. 10

    B. C. Tran, J. Seo, T. L. Hall, J. B. Fowlkes, and C. A. Cain, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 52 (7), 1121 (2005).

    Article  Google Scholar 

  11. 11

    C. Sciallero, M. Crocco, and A. Trucco, Meas. Sci. Technol. 22, 1 (2011).

    Article  Google Scholar 

  12. 12

    C. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, and D. Lohse, Biophys. J. 91, 4285 (2006).

    ADS  Article  Google Scholar 

  13. 13

    K. Hensel, M. Siepmann, A. Maghnouj, S. Hahn, and G. Schmitz, in Proc IEEE Int. Ultrasonics Symposium (Beijing, 2008), p. 1671.

  14. 14

    Yu. N. Makov, Acoust. Phys. 55 (4–5), 536 (2009).

    Google Scholar 

  15. 15

    M. D. Santin, D. A. King, J. Foiret, A. Haak, W. D. O’Brien, Jr., and S. L. Bridal, J. Acoust. Soc. Am. 127 (2), 1156 (2010).

    ADS  Article  Google Scholar 

  16. 16

    J. Alter, Ch. A. Sennoga, D. M. Lopes, R. J. Eckersley, and D. J. Wells, Ultrasound Med. Biol. 35 (6), 976 (2009).

    Article  Google Scholar 

  17. 17

    M. Tamosiunas, R. Jurkonis, L. M. Mir, A. Lukosevicius, M. S. Venslauskas, and S. Satkauskas, Technol. Cancer Res. Treat. 11 4, 375 (2012).

    Article  Google Scholar 

  18. 18

    C. A. Sennoga, V. Mahue, J. Loughran, J. Casey, J. M. Seddon, M. Tang, and R. J. Eckersley, Ultrasound Med. Biol. 36 (12), 2093 (2010).

    Article  Google Scholar 

  19. 19

    S. H. Hung, Ch. K. Yeh, T. H. Tsai, T. Chen, and R. Ch. Chen, Ultrasound Med. Biol. 37 (6), 949 (2011).

    Article  Google Scholar 

  20. 20

    M. Lampaskis and M. Averkiou, Ultrasound Med. Biol. 36 (2), 306 (2010).

    Article  Google Scholar 

  21. 21

    A. V. Patil, J. J. Rychak, A. L. Klibanov, Jr., and A. Hossack, Mol. Imaging 10 (4), 238 (2011).

    Article  Google Scholar 

  22. 22

    S. I. Madanshetty, R. A. Roy, and R. E. Apfel, J. Acoust. Soc. Am. 90 (3), 1515 (1991).

    ADS  Article  Google Scholar 

  23. 23

    A. Y. Ammi, S. L. Bridal, J. Mamou, G. I. Wang, and W. D. O’Brien, Jr., Proc. – IEEE Ultrason. Symp. 297 (4), F1129–34 (2006).

    Google Scholar 

  24. 24

    A. Sabraoui, C. Inserra, B. Gilles, J. C. Béra, and J. L. Mestas, Ultrason. Sonochem. 18 (2), 589 (2011).

    Article  Google Scholar 

  25. 25

    W. S. Chen, A. A. Brayman, T. J. Matula, and L. A. Crum, Ultrasound Med. Biol. 29 (5), 725 (2003).

    Article  Google Scholar 

  26. 26

    M. Tamosiunas, R. Jurkonis, L. M. Mir, A. Lukosevicius, M. S. Venslauskas, and S. Satkauskas, J. Ultrasound Med. 31 (12), 1993 (2012).

    Article  Google Scholar 

  27. 27

    M. Maciulevicius, M. Tamosiunas, R. Jurkonis, M. S. Venslauskas, and S. Satkauskas, Mol. Pharm. 12 (10), 3620 (2015).

    Article  Google Scholar 

  28. 28

    Z. Fan, D. Chen, and C. X. Deng, Ultrasound Med. Biol. 40 (6), 1260 (2014).

    Article  Google Scholar 

  29. 29

    Y. Zhou, K. Yang, J. Cui, J. Y. Ye, and C. X. Deng, J. Controlled Release 157 (1), 103 (2012).

    Article  Google Scholar 

  30. 30

    Z. Fan, R. E. Kumon, and Ch. X. Deng, Ther. Delivery 5 (4), 467 (2014).

    Article  Google Scholar 

  31. 31

    R. S. Meltzer, E. G. Tickner, and R. L. Popp, Ultrasound Med. Biol. 6 (3), 263 (1980).

    Article  Google Scholar 

  32. 32

    H. J. Vos, F. Guidi, E. Boni, and P. Tortoli, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 54 (7), 1333 (2007).

    Article  Google Scholar 

  33. 33

    A. L. Matveev, V. V. Mityugov, and A. I. Potapov, Acoust. Phys. 47 (2), 202 (2001).

    ADS  Article  Google Scholar 

  34. 34

    M. Schneider, Echocardiography 16 (7–2), 743 (1999).

  35. 35

    J. M. Gorce, M. Arditi, and M. Schneider, Invest. Radiol. 35 (11), 661 (2000).

    Article  Google Scholar 

  36. 36

    P. S. Sidhu, P. L. Allan, F. Cattin, D. O. Cosgrove, A. H. Davies, D. D. Do, S. Karakagil, J. Langholz, D. A. Legemate, A. Martegani, J. B. Llull, C. Pezzoli, and A. Spinazzi, Br. J. Radiol. 79, 44 (2006).

    Article  Google Scholar 

  37. 37

    N. de Jong, M. Emmer, A. van Wamel, and M. Versluis, Med. Biol. Eng. Comput. 47 (8), 861 (2009).

    Article  Google Scholar 

  38. 38

    A. J. Sojahrood, R. Karshafian, and M. C. Kolios, AIP Conf. Proc. 1481, 351 (2012).

    ADS  Article  Google Scholar 

  39. 39

    H. Hosseinkhah and K. Hynynen, Phys. Med. Biol. 57 (3), 785 (2012).

    Article  Google Scholar 

  40. 40

    E. Sassaroli and K. Hynynen, Phys. Med. Biol. 50 (22), 5293 (2005).

    Article  Google Scholar 

  41. 41

    J. M. Escoffre, A. Novell, J. Piron, A. Zeghimi, A. Doinikov, and A. Bouakaz, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 60 (1), 46 (2013).

    Google Scholar 

  42. 42

    D. H. Thomas, V. Sboros, M. Emmer, H. Vos, and N. de Jong, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 60 (1), 105 (2013).

    Article  Google Scholar 

  43. 43

    M. Afadzi, C. L. Davies, Y. H. Hansen, T. Johansen, O. K. Standal, R. Hansen, S. E. Masoy, E. A. Nilssen, and B. Angelsen, Ultrasound Med. Biol. 38 (3), 476 (2012).

    Article  Google Scholar 

  44. 44

    L. B. Feril, Jr., T. Kondo, Q. L. Zhao, R. Ogawa, K. Tachibana, N. Kudo, S. Fujimoto, and S. Nakamura, Ultrasound Med. Biol. 29 (2), 331 (2003).

    Article  Google Scholar 

  45. 45

    A. Y. Ammi, R. O. Cleveland, J. Mamou, G. I. Wang, S. L. Bridal, and W. D. O’Brien, Jr., IEEE Trans. Ultrason., Ferroelectr. Freq. Control 53 (1), 126 (2006).

    Article  Google Scholar 

  46. 46

    D. A. King, M. J. Malloy, A. C. Roberts, A. Haak, C. C. Yoder, and W. D. O’Brien, Jr., J. Acoust. Soc. Am. 127 (6), 3449 (2010)

    ADS  Article  Google Scholar 

  47. 47

    K. Hensel and G. Schmitz, in Proc. 2010 IEEE Int. Ultrasonics Symposium (San Diego, CA, 2010), p. 1700.

  48. 48

    W. L. Nyborg, Ultrasound Med. Biol. 32 (10), 1557 (2006).

    Article  Google Scholar 

  49. 49

    H. S. Min, E. Kang, H. Koo, J. Lee, K. Kim, R. W. Park, I. S. Kim, Y. Choi, I. C. Kwon, and M. Han, Biomaterials 33, 936 (2012).

    Article  Google Scholar 

  50. 50

    D. E. Goertz, E. Cherin, A. Needles, R. Karshafian, A. S. Brown, P. N. Burns, and F. S. Foster, IEEE Trans. Ultrason., Ferroelectr. Freq. Control 52 (1), 65 (2005).

    Article  Google Scholar 

  51. 51

    A. D. Mansfel’d, G. P. Volkov, A. G. Sanin, and I. A. Vladimirov, Acoust. Phys. 56 (3), 290 (2010).

    ADS  Article  Google Scholar 

  52. 52

    Ch. A. Sennoga, J. S. M. Yeh, J. Alter, E. Stride, P. Nihoyannopoulos, J. M. Seddon, D. O. Haskard, J. V. Hajnal, M. X. Tang, and R. J. Eckersley, Ultrasound Med. Biol. 38 (5), 834 (2012).

    Article  Google Scholar 

Download references


This work was supported by grant (MIP-034/2013) from the Research Council of Lithuania.

Author information



Corresponding author

Correspondence to R. Jurkonis.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jurkonis, R., Sakalauskas, A., Lukoševičius, A. et al. Mapping Microbubble and Ultrasound Spatio-temporal Interaction by M-mode Imaging: The Study of Feasibility. Acoust. Phys. 65, 216–225 (2019).

Download citation


  • ultrasonic imaging
  • acoustical measurement methods in biological media