Advertisement

Acoustical Physics

, Volume 64, Issue 4, pp 479–491 | Cite as

Features of the Invariant of the Spatial–Frequency Interference Structure of Acoustic Fields in Oceanic Waveguides

  • Yu. V. PetukhovEmail author
  • E. L. Borodina
  • V. G. Burdukovskaya
Ocean Acoustics. Hydroacoustics
  • 35 Downloads

Abstract

The paper considers the regular patterns that can be manifested in the behavior of the invariant of the spatial–frequency interference structure of an acoustic field in oceanic waveguides that are homogeneous and inhomogeneous along a track. Using the WKB and adiabatic approximations, an analytic expression is obtained for the invariant that, when certain conditions are fulfilled, reduces to the well-known classical expression independent of the mode numbers, their parity, or the emission frequency. It has been established that the approximate classical expression for the invariant correctly describes the slope of interference lines only in ranges of variation in the grazing angles of modes where the dependence of the cycle length of their corresponding Brillouin waves on the ray parameter is quite smooth and monotonic. The paper studies the formation of the spatial–frequency interference structure of an acoustic field propagating from a shallowwater isovelocity waveguide to a relatively deep-water waveguide with a near-surface sound channel.

Keywords

oceanic waveguides wideband emission interference structure interference invariant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. Chuprov and N. E. Mal’tsev, Dokl. Akad. Nauk SSS. 257 (2), 475 (1981).Google Scholar
  2. 2.
    S. D. Chuprov, in Acoustics of the Ocean. State-of-the-Art, Ed. by L. M. Brekhovskikh and I. B. Andreeva (Nauka, Moscow, 1982), pp. 71–91 [in Russian].Google Scholar
  3. 3.
    G. A. Grachev, Akust. Zh. 39 (1), 67 (1993).Google Scholar
  4. 4.
    G. L. D'Spain and W. A. Kuperman, J. Acoust. Soc. Am. 106 (5), 2454 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. V. Petukhov and E. L. Borodina, Acoust. Phys. 56 (6), 1050 (2010).CrossRefGoogle Scholar
  6. 6.
    Z. D. Zhao, J. R. Wu, and E. C. Shang, J. Acoust. Soc. Am. 138 (1), 223 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    S. V. Burenkov, Akust. Zh. 35 (5), 797 (1989).Google Scholar
  8. 8.
    L. M. Brekhovskikh and Yu. P. Lysanov, Theoretical Foundations of Oceanic Acoustics (Nauka, Moscow, 2007) [in Russian].Google Scholar
  9. 9.
    Yu. V. Petukhov, Acoust. Phys. 57 (3), 401 (2011).CrossRefGoogle Scholar
  10. 10.
    B. G. Katsnel’son and V. G. Petnikov, Acoustics of Shallow Sea (Nauka, Moscow, 1997) [in Russian].Google Scholar
  11. 11.
    K. B. Smith, J. Comput. Acoust. 9 (1), 243 (2001).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Petukhov
    • 1
    Email author
  • E. L. Borodina
    • 1
  • V. G. Burdukovskaya
    • 1
  1. 1.Applied Physics InstituteRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations