Skip to main content
Log in

An Experimental Study and Theoretical Simulation of Jet-Wing Interaction Noise

  • Physical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The use of high-bypass-ratio engines in civil aviation has resulted in the occurrence of an additional noise source associated with noise of interaction between a jet and an airplane wing. A theoretical model is proposed for predicting the characteristics of interaction noise based on the near-field parameters for an isolated jet. The required near-field characteristics were obtained experimentally in the AC-2 anechoic chamber of the Central Aerohydrodynamic Institute (TsAGI) using a system of azimuthal microphone arrays. Noise in the far-field zone was also measured for both an isolated jet and a jet with a closely located plate simulating a wing. The results of comparing the directivities and spectra of interaction noise obtained using the proposed model and measured experimentally are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Dorsch, W. J. Kreim, and W. A. Olsen, in Proc. 10th AIAA Aerospace Sciences Meeting (San Diego, CA, 1972), Paper No. AIAA–1972–129.

    Google Scholar 

  2. M. R. Fink and W. A. Olsen, in Proc. 3rd AIAA Aeroacoustics Conference (Palo Alto, CA, 1976) Paper No. AIAA–1976–501.

    Google Scholar 

  3. D. J. Way and B. A. Turner, in 6th AIAA Aeroacoustics Conference (Lahaina, HI, 1980), Paper No. AIAA–1980–1048.

    Google Scholar 

  4. C. J. Mead and P. J. R. Strange, in Proc. 4th AIAA/CEAS Aeroacoustics Conference (Toulouse, 1998), Paper No. AIAA–1998–2207.

    Google Scholar 

  5. V. G. Mengle, in Proc. 17th AIAA/CEAS Aeroacoustics Conference (Portland, OR, 2011), Paper No. AIAA–2011–2705.

    Google Scholar 

  6. V. F. Kopiev, G. A. Faranosov, M. Yu. Zaytsev, E. V. Vlasov, R. K. Karavosov, I. V. Belyaev, and N. N. Ostrikov, in Proc.19th AIAA/CEAS Aeroacoustics Conference (Berlin, 2013), Paper No. AIAA–2013–2284.

    Google Scholar 

  7. J. Huber, G. Drochon, A. Pintado–Peno, F. Clero, and G. Bodard, in Proc. 20th AIAA/CEAS Aeroacoustics Conference (Atlanta, GA, 2014), Paper No. AIAA–2014–3032.

    Google Scholar 

  8. D. Lyubimov, V. Maslov, A. Mironov, A. Secundov, and D. Zakharov, Int. J. Aeroacoust. 13 (3–4), 275 (2014).

    Google Scholar 

  9. I. V. Belyaev, M. Yu. Zaytsev, V. F. Kopiev, N. N. Ostrikov and G. A. Faranosov, Acoust. Phys. 63 (1), 14 (2017).

    Article  ADS  Google Scholar 

  10. A. V. G. Cavalieri, P. Jordan, W. R. Wolf, and Y. Gervais, J. Sound Vib. 333, 6516 (2014).

    Article  ADS  Google Scholar 

  11. O. P. Bychkov and G. A. Faranosov, Acoust. Phys. 60 (5), 633 (2014).

    ADS  Google Scholar 

  12. J. Vera, R. H. Self, and M. J. Kingan, in Proc. 21st AIAA/CEAS Aeroacoustic Conference (Dallas, TX, 2015), Paper No. AIAA 2015–2216.

    Google Scholar 

  13. G. A. Faranosov, V. F. Kopiev, I. V. Belyaev, O. P. Bychkov, and S. A. Chernyshev, in Proc. 23rd AIAA/CEAS Aeroacoustics Conference (Denver, CO, 2017), Paper No. 2017–3527.

    Google Scholar 

  14. B. Lyu, A. P. Dowling, and I. Naqavi, J. Fluid Mech. 811, 234 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  15. V. F. Kopiev, V. A. Semiletov, P. G. Yakovlev, S. A. Karabasov, and G. A. Faranosov, Int. J. Aeroacoust. 15 (6–7), 631 (2016).

    Google Scholar 

  16. F. Gand and M. Huet, in Proc. 23rd AIAA/CEAS Aeroacoustics Conference (Denver, CO, 2017), Paper No. 2017–3526.

    Google Scholar 

  17. G. A. Faranosov and O. P. Bychkov, J. Acoust. Soc. Am. 141 (1), 289 (2017).

    Article  ADS  Google Scholar 

  18. P. A. S. Nogueira, A. V. G. Cavalieri, and P. Jordan, J. Sound Vib. 391, 95 (2017).

    Article  ADS  Google Scholar 

  19. J. E. Ffowcs Williams and L. H. Hall, J. Fluid Mech. 40, 657 (1970).

    Article  ADS  Google Scholar 

  20. T. N. Krasil’nikova, Akust. Zh. 22 (6), 892 (1976).

    ADS  Google Scholar 

  21. T. Suzuki and T. Colonius, J. Fluid Mech. 565, 197 (2006).

    Article  ADS  Google Scholar 

  22. V. F. Kopiev and G. A. Faranosov, Acoust. Phys. 61 (1), 60 (2015).

    Article  ADS  Google Scholar 

  23. G. Faranosov, I. Belyaev, V. Kopiev, M. Zaytsev, A. Aleksentsev, Y. Bersenev, V. Chursin, and T. Viskova, AIAA J. 55 (2), 572 (2017).

    Article  ADS  Google Scholar 

  24. R. E. A. Arndt, D. F. Long, and M. N. Glauser, J. Fluid Mech. 340, 1 (1997).

    Article  ADS  Google Scholar 

  25. O. T. Schmidt, A. Towne, T. Colonius, A. V. G. Cavalier, P. Jordan, and G. A. Bres, J. Fluid Mech. 825, 1153 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  26. V. F. Kop’ev and G. A. Faranosov, Acoust. Phys. 54 (3), 319 (2008).

    Article  ADS  Google Scholar 

  27. C. K. W. Tam and D. E. Burton, J. Fluid Mech. 138, 273 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  28. V. F. Kopiev, S. A. Chernyshev, M. Yu. Zaitsev, and V. M. Kuznetsov, in Proc. 12th AIAA/CEAS Aeroacoustics Conference (Cambridge, MA, 2006), Paper No. AIAA–2006–2595.

    Google Scholar 

  29. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Fizmatlit, Moscow, 1962) [in Russian].

    Google Scholar 

  30. B. Noble, Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations (Pergamon Press, New York, 1958; Izd. Inostrannoi Literatury, 1952).

    Google Scholar 

  31. L. Felsen and N. Markuvits, Radiation and Scattering of Waves (John Wiley and Sons, New York, 1994).

    Google Scholar 

  32. R. K. Amiet, J. Sound Vib. 41 (4), 407 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Bychkov.

Additional information

Original Russian Text © O.P. Bychkov, G.A. Faranosov, 2018, published in Akusticheskii Zhurnal, 2018, Vol. 64, No. 4, pp. 437–453.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bychkov, O.P., Faranosov, G.A. An Experimental Study and Theoretical Simulation of Jet-Wing Interaction Noise. Acoust. Phys. 64, 437–452 (2018). https://doi.org/10.1134/S1063771018030041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771018030041

Keywords

Navigation