Acoustical Physics

, Volume 64, Issue 2, pp 144–149 | Cite as

Radiative Instability of an Unbounded Jet Flow

  • M. V. Kalashnik
Classical Problems of Linear Acoustics and Wave Theory


The problem of the linear dynamics of disturbances of an unbounded jet flow with a piecewise linear velocity profile is considered. The stable disturbances of a flow in an incompressible medium are so-called flow waves localized near a vorticity jump. In this work, it is shown that the amplitudes of these waves slowly increase in a compressible medium due to acoustic radiation; i.e., an instability appears. The asymptotic solution to the problem for small Mach numbers is represented in terms of Airy functions. An analytic expression for the growth increment of the disturbances is obtained.


acoustic radiation radiative instability jet flow acoustic and internal gravity waves 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Lyamshev and A. T. Skvortsov, Akust. Zh. 34 (15), 769 (1988).ADSGoogle Scholar
  2. 2.
    M. S. Howe, Theory of Vortex Sound (Cambridge Univ. Press, Cambridge, 2003).zbMATHGoogle Scholar
  3. 3.
    E. Broadbend and D. Moore, Philos. Trans. R. Soc., A 290, 353 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    V. F. Kop”ev and E. A. Leont’ev, Akust. Zh. 29 (2), 192 (1983).Google Scholar
  5. 5.
    V. Yu. Tseitlin, Akust. Zh. 34 (2), 321 (1988).ADSGoogle Scholar
  6. 6.
    V. M. Gryanik, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 24 (5), 513 (1988).MathSciNetGoogle Scholar
  7. 7.
    V. Zeitlin, Phys. Fluids A 3 (6), 1677 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. A. Stepanyants and A. L. Fabrikant, Waves Propagation in Shear Flows (Nauka, Moscow, 1996) [in Russian].zbMATHGoogle Scholar
  9. 9.
    G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge Univ. Press, Cambridge, 2006).CrossRefzbMATHGoogle Scholar
  10. 10.
    M. V. Kalashnik and O. G. Chkhetiani, Fluid Dyn. 49 (3), 384 (2014).MathSciNetCrossRefGoogle Scholar
  11. 11.
    F. Lott, R. Plougonven, and J. Vanneste, J. Atmos. Sci. 67, 157 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    M. V. Kalashnik and O. G. Chkhetiani, J. Atmos. Sci. 74, 293 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    G. B. Whitham, Linear and Nonlinear Waves (John Wiley and Sons, New York, 1974; Mir, Moscow, 1977).zbMATHGoogle Scholar
  14. 14.
    M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations (Nauka, Moscow, 1984) [in Russian].zbMATHGoogle Scholar
  15. 15.
    A. H. Nayfeh, Perturbation Methods (John Wiley and Sons, New York, 1973; Mir, Moscow, 1976).zbMATHGoogle Scholar
  16. 16.
    D. G. Dritshel and J. Vanneste, J. Fluid Mech. 561, 237 (2006).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    R. S. Lindzen, Dynamics in Atmospheric Physics (Cambridge Univ. Press, Cambridge, 1990).CrossRefGoogle Scholar
  18. 18.
    P. N. Svirkunov and M. V. Kalashnik, Usp. Fiz. Nauk 184 (1), 89 (2014).CrossRefGoogle Scholar
  19. 19.
    M. V. Kalashnik, Izv., Atmos. Ocean. Phys. 50 (6), 638 (2014).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Typhoon Research and Production AssociationObninskRussia

Personalised recommendations