Acoustical Physics

, Volume 64, Issue 2, pp 164–174 | Cite as

Peculiarities of Acoustic Wave Reflection from a Boundary or Layer of a Two-Phase Medium

Physical Acoustics
  • 3 Downloads

Abstract

A mathematical model is presented for determining the oblique incidence of an acoustic wave at both a boundary and layer of a gas–drop mixture or a bubbly liquid of finite thickness. The basic wave reflection and transmission patterns are established for the incidence of a low-frequency acoustic wave at an interface between a pure gas and a gas–drop mixture, as well as between a pure and bubbly liquid. A range of varying volume fractions for a drop is determined, for which the zero value of the reflection coefficient is possible for low frequencies at oblique incidence. It is shown that the reflection coefficient will never be zero at angles of incidence above 24.5° from a gas–drop mixture at a pure gas boundary; however, when a wave is incident from a pure gas at a gas–drop mixture boundary, a zero reflection coefficient is possible for nonzero angles of incidence and the volume fraction of inclusions. The results of calculating reflection of an acoustic wave from a two-phase layer of a medium with a finite thickness are presented. It is established that the minimum reflection coefficient is possible depending on the perturbation frequency for a certain range of angles of incidence for the boundary or the layer of the gas–drop mixture, which is governed mainly by difference in densities between it and the pure gas.

Keywords

acoustic waves gas–drop mixture or gas suspension bubbly liquid interface reflection and transmission coefficient two-layer medium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Gusev and O. V. Rudenko, Acoust. Phys. 61 (2), 152 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Grigor’ev, A. A. Lun’kov, and V. G. Petnikov, Acoust. Phys. 61 (1), 85 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    V. Sh. Shagapov and V. V. Sarapulova, Acoust. Phys. 61 (1), 37 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    J. E. Cole and R. A. Dobbins, J. Atmos. Sci. 28 (2), 202 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    G. A. Davidson, J. Atmos. Sci. 32 (11), 2201 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    D. A. Gubaidullin and A. I. Ivandaev, Prikl. Mekh. Tekh. Fiz., No. 6, 27 (1990).Google Scholar
  7. 7.
    R. Ishii and H. Matsuhisa, J. Fluid Mech. 130, 259 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    V. Sh. Shagapov and V. V. Sarapulova, Izv., Atmos. Ocean. Phys. 50 (6), 602 (2014).CrossRefGoogle Scholar
  9. 9.
    V. Sh. Shagapov and V. V. Sarapulova, J. Appl. Mech. Tech. Phys. 56 (5), 838 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    V. Leroy, A. Strybulevych, M. Lanoy, F. Lemoult, A. Tourin, and J. H. Page, Phys. Rev. B 91, 020301 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    O. B. Zel’manskii, S. N. Petrov, and A. A. Kazeka, Dokl. Beloruss. Gos. Univ. Inf. Radioelektron. 78 (8), 30 (2013).Google Scholar
  12. 12.
    K. Lee, B. K. Choi, and S. W. Yoon, J. Korean Phys. Soc. 40 (2), 256 (2002).Google Scholar
  13. 13.
    T. M. Tien, MT Thesis (Tainan, National Cheng Kung Univ., 2001).Google Scholar
  14. 14.
    V. Leroy, A. Strybulevych, J. H. Page, and M. G. Scanlon, J. Acoust. Soc. Am. 123 (4), 1931 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    D. A. Gubaidullin and Yu. V. Fedorov, Fluid Dyn. 52 (1), 107 (2017).MathSciNetCrossRefGoogle Scholar
  16. 16.
    R. I. Nigmatulin, D. A. Gubaidullin, and A. A. Nikiforov, Dokl. Phys. 59 (6), 286 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    R. I. Nigmatulin, Dynamics of Multi-Phase Media (Nauka, Moscow, 1987), Part 1 [in Russian].Google Scholar
  18. 18.
    S. Temkin, Suspension Acoustics: An Introduction to the Physics of Suspensions (Cambridge Univ. Press, Cambridge, 2005).CrossRefMATHGoogle Scholar
  19. 19.
    D. A. Gubaidullin, Dynamics of Two-Phase Vapor-Gas-Droplet Media (Izd. Kazanskogo Matematicheskogo Obshchestva, Kazan, 1998) [in Russian].Google Scholar
  20. 20.
    V. E. Nakoryakov, B. G. Pokusaev, and I. R. Shreiber, Wave Dynamics of Gas, Vapor and Liquid Media (Energoatomizdat, Moscow, 1990) [in Russian].MATHGoogle Scholar
  21. 21.
    A. Yu. Varaksin, High Temp. 51 (3), 377 (2013).CrossRefGoogle Scholar
  22. 22.
    L. M. Brekhovskikh and O. A. Godin, Acoustics of Layered Media (Nauka, Moscow, 1989) [in Russian].MATHGoogle Scholar
  23. 23.
    D. A. Gubaidullin and Yu. V. Fedorov, Prikl. Mat. Mekh. 77 (5), 743 (2013).Google Scholar
  24. 24.
    A. O. Maksimov and Yu. A. Polovinka, Acoust. Phys. 63 (1), 26 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    D. A. Gubaidullin and Yu. V. Fedorov, Acoust. Phys. 62 (2), 179 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    A. Prosperetti, Annu. Rev. Fluid Mech. 49, 221 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973) [in Russian].Google Scholar
  28. 28.
    S. N. Gurbatov and O. V. Rudenko, Acoustics in Problems (Nauka, Fizmatlit, Moscow, 1996) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Mechanics and Engineering, Kazan Science CenterRussian Academy of SciencesKazanRussia

Personalised recommendations