Advertisement

Acoustical Physics

, Volume 64, Issue 2, pp 158–163 | Cite as

Experimental Estimation of the Frequency-Dependent Reflection Coefficient of a Sound-Absorbing Material at Oblique Incidence

  • A. A. Belous
  • A. I. Korol’kov
  • A. V. Shanin
Physical Acoustics
  • 22 Downloads

Abstract

A method for experimentally determining the frequency-dependent reflection coefficient of a sound-absorbing material at oblique incidence is presented. The M-sequence method and a monopole source are used to measure pulse responses of melamine foam for different angles of incidence of an acoustic wave. Frequency dependencies of the reflection coefficient obtained at different angles of incidence are compared with that calculated theoretically using the Biot model and approximate inversion of the Fourier–Bessel integral.

Keywords

sound absorption monopole source reflection coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Blauert and N. Xiang, Acoustics for Engineers (Springer, Berlin, 2008).Google Scholar
  2. 2.
    C. W. Kosten, Acta Acustica 10, 400 (1960).Google Scholar
  3. 3.
    L. L. Beranek, J. Acoust. Soc. Am. 12, 3 (1940).ADSCrossRefGoogle Scholar
  4. 4.
    ASTM No. E1050: Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System (ASTM Int., Philadelphia, PA, 1990).Google Scholar
  5. 5.
    F. J. Fahy, J. Sound Vib. 97 (1), 168 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    A. F. Seybert and D. F. Ross, J. Acoust. Soc. Am. 61 (5), 1362 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    J. Y. Chung and D. A. Blaser, J. Acoust. Soc. Am. 68 (3), 907 (1980).ADSCrossRefGoogle Scholar
  8. 8.
    J. Y. Chung and D. A. Blaser, J. Acoust. Soc. Am. 68 (3), 914 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    W. T. Chu, Noise Control Eng. J. 37 (1), 37 (1991).CrossRefGoogle Scholar
  10. 10.
    E. Brandao, A. Lenzi, and S. Paul, Acta Acust. Acust. 101, 443 (2015).CrossRefGoogle Scholar
  11. 11.
    U. Ingard and R. H. Bolt, J. Acoust. Soc. Am. 23 (5), 509 (1951).ADSCrossRefGoogle Scholar
  12. 12.
    Y. Ando, in Proc. 6th Int. Congress on Acoustics (Tokyo,1968), Paper E33.Google Scholar
  13. 13.
    M. Yuzawa, Appl. Acoust. 8, 27 (1975).CrossRefGoogle Scholar
  14. 14.
    J. C. Davies and K. A. Mulholland, J. Sound Vib. 67 (1), 135 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    Z. Kintsl, Akust. Zh. 21 (1), 49 (1975).Google Scholar
  16. 16.
    K. A. Hollin and M. H. Jones, Acustica 37, 103 (1977).Google Scholar
  17. 17.
    M. Garai, Appl. Acoust. 39, 119 (1993).CrossRefGoogle Scholar
  18. 18.
    E. Mommertz, Appl. Acoust. 46, 251 (1995).CrossRefGoogle Scholar
  19. 19.
    M. Tamura, J. Acoust. Soc. Am. 88 (5), 2259 (1990).ADSCrossRefGoogle Scholar
  20. 20.
    M. Tamura, J. Acoust. Soc. Am. 97 (4), 2255 (1995).ADSCrossRefGoogle Scholar
  21. 21.
    M. A. Biot, J. Acoust. Soc. Am. 28 (2), 168 (1956).ADSCrossRefGoogle Scholar
  22. 22.
    M. A. Biot, J. Acoust. Soc. Am. 28 (2), 179 (1956).ADSCrossRefGoogle Scholar
  23. 23.
    N. Geebelen, L. Boeckx, G. Vermeir, W. Lauriks, J.-F. Allard, and O. Dazel, Acta Acust. Acust. 93, 783 (2007).Google Scholar
  24. 24.
    J. Cuenca, C. Van der Kelen, and P. Goransson, J. Appl. Phys. 115, 084904 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Isakovich, General Acoustics (Nauka, Moscow, 1973) [in Russian].Google Scholar
  26. 26.
    J. F. Allard and N. Atalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd ed. (John Wiley and Sons, 2009).CrossRefGoogle Scholar
  27. 27.
    V. Yu. Valyaev and A. V. Shanin, Acoust. Phys. 57 (3), 427 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    L. A. Vainshtein, Diffraction Theory and Factorization Method (Sovetskoe Radio, Moscow, 1966) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Belous
    • 1
  • A. I. Korol’kov
    • 1
  • A. V. Shanin
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations