Acoustical Physics

, Volume 64, Issue 2, pp 237–244 | Cite as

Experimental Study of a Borehole Acoustic Radiator with a Ring in a Long Cylindrical Chamber

  • A. A. Abdrashitov
  • E. A. Marfin
  • D. V. Chachkov
Atmospheric and Aeroacoustics
  • 3 Downloads

Abstract

We have carried out an experimental study on the generation of pressure oscillations in a model of a borehole ring acoustic radiator that moved within a cylindrical chamber. The possibility of preserving a short jet with increasing resonator chamber length has been studied. The influence of the jet length, which is determined by the interval between the nozzle and the ring, on the frequency and intensity of generation has been considered. The constancy of the chamber resonance at the natural frequency, regardless of the length and velocity of the jet, has been noted. Recommendations for choosing the length of the chamber and the generation frequency associated with it are given.

Keywords

jet generation modes Helmholtz jet resonator hole tone intensified oil production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. A. Beresnev and P. A. Johnson, Geophysics 59 (6), 1000–1017 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    E. A. Marfin, Y. I. Kravtsov, A. A. Abdrashitov, R. N. Gataullin, and A. R. Galimzyanova, Pet. Sci. Technol. 33 (15–16), 1526–1532 (2015).CrossRefGoogle Scholar
  3. 3.
    E. A. Marfin and Ya. I. Kravtsov, Izv. Ross. Akad. Nauk, Energ., No. 6, 108–113 (2005).Google Scholar
  4. 4.
    Th. Morel, J. Fluids Eng. 101 (3), 383–390 (1979).CrossRefGoogle Scholar
  5. 5.
    S. Sami and C. Anderson, in Proc. 7th Int. Symposium on Jet Cutting Technology (British Hydromechanics Research Association, Cranfield, Bedford, 1984), pp. 91–98.Google Scholar
  6. 6.
    M. Alster, J. Sound. Vib. 24 (1), 63–85 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    R. O. Cornett, PhD Thesis (Univ. of Texas, Austin, TX, 1940).Google Scholar
  8. 8.
    W. L. Nyborog, M. D. Burkhard, and H. K. Schilling, J. Acoust. Soc. Am. 24 (3), 293–304 (1952).ADSCrossRefGoogle Scholar
  9. 9.
    R. L. Panton and J. M. Miller, J. Acoust. Soc. Am. 57 (6), 1533 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    V. I. Kondrat’ev and T. I. Nazarenko, Air Acoustics (Nauka, Moscow, 1980) [in Russian].Google Scholar
  11. 11.
    R. C. Chanaud and A. Powell, J. Acoust. Soc. Am. 37 (5), 902 (1965).ADSCrossRefGoogle Scholar
  12. 12.
    Yu. A. Bur’yan, V. N. Sorokin, and A. A. Kapelyukhovskii, Avtom., Telemekh. Svyaz Neft. Prom-sti, No. 5, 6 (2012).Google Scholar
  13. 13.
    E. S. Fedotov and V. V. Pal’chikovskii, Vestn. Permsk. Nats. Issled. Politekh. Univ. Aerokosm. Tekh., No. 38, 107 (2014).Google Scholar
  14. 14.
    S. V. Gorin and M. V. Kuklin, Acoust. Phys. 58 (3), 363 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    V. F. Kopiev, V. V. Palchikovskiy, I. V. Belyaev, Yu. V. Bersenev, S. Yu. Makashov, I. V. Khramtsov, I. A. Korin, E. V. Sorokin and O. Yu. Kustov, Acoust. Phys. 63 (1), 113 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    L. A. Tkachenko and M. V. Sergienko, Acoust. Phys. 62 (1), 51 (2016).ADSCrossRefGoogle Scholar
  17. 17.
    Th. Morel, U. S. Patent No. 4041984 (1977})Google Scholar
  18. 18.
    A. A. Abdrashitov, V. M. Borodin, and E. A. Marfin, RF Patent No. 2572250, Byull. Izobret., No. 11 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Abdrashitov
    • 1
  • E. A. Marfin
    • 1
  • D. V. Chachkov
    • 1
    • 2
  1. 1.Kazan Scientific CenterRussian Academy of SciencesKazanRussia
  2. 2.Kazan Branch, Joint Supercomputer CenterRussian Academy of SciencesKazanRussia

Personalised recommendations