Advertisement

Acoustical Physics

, Volume 64, Issue 2, pp 196–204 | Cite as

Formation Mechanisms for the Spectral Characteristis of Low-Frequency Reverberations and Predictive Estimates

  • B. M. Salin
  • M. B. Salin
Ocean Acoustics. Hydroacoustics

Abstract

The paper considers the problem of monostatic scattering of low-frequency sound waves by nearsurface volumetric inhomogeneities under conditions of intense wind waves. We calculate the expected shape of the scattered signal spectrum taking into account the distribution of the volumetric inhomogeneities over the surface and their quasiperiodic motion in three-dimensional space under the action of wind waves. For deep-ocean conditions, a carrier frequency of 228 Hz, and a pulse duration longer than 100 s, we compare the experimental data on the shape of the reverberation spectrum with theoretical estimates. We compare the spectral levels of subsurface scattering with similar data on sound scattering directly on the wind-roughed surface.

Keywords

marine low-frequency reverberation backscattering deep ocean volumetric inhomogeneities wind waves scattering force reverberation spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. C. Averbakh, L. F. Bondar’, V. N. Golubev, V. Yu. Gol’dblat, L. S. Dolin, A. G. Nechaev, K. E. Pigalov, G. E. Smirnov, and E. I. Tumaeva, Akust. Zh. 36 (6), 1119–1121 (1990).Google Scholar
  2. 2.
    D. I. Abrosimov, V. S. Averbakh, E. I. Bolonicheva, V. N. Golubev, V. Yu. Gol’dblat, L. S. Dolin, A. G. Nechaev, K. E. Pigalov, and N. I. Sirotkina, Akust. Zh. 41 (3), 364–369 (1995).Google Scholar
  3. 3.
    I. B. Andreeva, A. V. Volkova, and E. A. Kopyl, Akust. Zh. 29 (2), 146–151 (1983).Google Scholar
  4. 4.
    M. B. Salin, A. S. Dosaev, A. I. Konkov, and B. M. Salin, Acoust. Phys. 60 (4), 442–454 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    I. B. Andreeva and V. N. Lupovskii, Akust. Zh. 39 (4), 564–574 (1993).Google Scholar
  6. 6.
    A. V. Lebedev and B. M. Salin, Acoust. Phys. 50 (6), 704–716 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    E. L. Borodina and B. M. Salin, Acoust. Phys. 56 (5), 675–683 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Thorpe, Philos. Trans. R. Soc., A 304, 155–210 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    S. Vagle, C. McNeil, and N. Steiner, J. Geophys. Res. 115, C12054 (2010). doi 10.1029/2009JC005990ADSCrossRefGoogle Scholar
  10. 10.
    V. A. Akulichev and V. A. Bulanov, Proc. Meet. Acoust. 24, 045003 (2015). http://dx.doi.org/. doi 10.1121/2.0000163Google Scholar
  11. 11.
    B. M. Salin, O. N. Kemarskaya, P. A. Molchanov, and M. B. Salin, Acoust. Phys. 63 (3), 338–345 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    I. B. Andreeva, Akust. Zh. 41 (5), 699–705 (1995).Google Scholar
  13. 13.
    V. V. Shuleikin, Physics of Sea (Nauka, Moscow, 1968) [in Russian].Google Scholar
  14. 14.
    A. H. Perry and J. M. Walker, Ocean-Atmosphere System (Prentice Hall Press, 1977).Google Scholar
  15. 15.
    B. M. Salin, M. B. Salin, and R. C. Spindel, Acoust. Phys. 58 (2), 220–227 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations