Skip to main content
Log in

On the possibility of using multi-element phased arrays for shock-wave action on deep brain structures

  • Physical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A noninvasive ultrasound surgery method that relies on using multi-element focused phased arrays is being successfully used to destroy tumors and perform neurosurgical operations in deep structures of the human brain. However, several drawbacks that limit the possibilities of the existing systems in their clinical use have been revealed: a large size of the hemispherical array, impossibility of its mechanical movement relative to the patient’s head, limited volume of dynamic focusing around the center of curvature of the array, and side effect of overheating skull. Here we evaluate the possibility of using arrays of smaller size and aperture angles to achieve shock-wave formation at the focus for thermal and mechanical ablation (histotripsy) of brain tissue taking into account current intensity limitations at the array elements. The proposed approach has potential advantages to mitigate the existing limitations and expand the possibilities of transcranial ultrasound surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. R. Gavrilov, Focused Ultrasound of High Intesity in Medicine (Fazis, Moscow, 2013) [in Russian].

    Google Scholar 

  2. W. J. Elias, D. Huss, T. Voss, J. Loomba, M. Khaled, E. Zadicario, R. C. Frysinger, S. A. Sperling, S. Wylie, S. J. Monteith, J. Druzgalm, B. B. Shahm, M. Harrison, and M. Wintermark, The New England J. Med. 369 (7), 640–648 (2013).

    Article  Google Scholar 

  3. N. McDannold, G. Clement, P. Black, F. Jolesz, and K. Hynynen, Neurosurgery 66 (2), 323–332 (2010).

    Article  Google Scholar 

  4. S. Monteith, R. Medel, N. F. Kassell, W. Wintermark, M. Eames, J. Snell, E. Zadicario, J. Grinfeld, J. P. Sheehan, and W. J. Elias, J. Neurosurgery 118 (2), 319–328 (2013).

    Article  Google Scholar 

  5. D. Jeanmonod, B. Werner, A. Morel, L. Michels, E. Zadicario, G. Schiff, and E. Martin, Neurosurg. Focus. 32 (1), E1 (2012).

    Article  Google Scholar 

  6. J. L. Thomas and M. A. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43 (6), 1122–1129 (1996).

    Article  Google Scholar 

  7. K. Hynynen and F. A. Jolesz, Ultrasound Med. Biol. 24 (2), 275–283 (1998).

    Article  Google Scholar 

  8. K. Hynynen and R. M. Jones, Phys. Med. Biol. 61 (1), 206–248 (2016).

    Article  Google Scholar 

  9. O. A. Sapozhnikov, P. B. Rosnitskiy, and V. A. Khokhlova, in Program of 5th FUSF, 2016.

    Google Scholar 

  10. H. Odéen, J. de Bever, S. Almquist, A. Farrer, N. Todd, A. Payne, J. W. Snell, D. A. Christensen, and D. L. Parker, J. Therapeutic Ultrasound 2, Art. 19 (2014).

    Article  Google Scholar 

  11. P. B. Rosnitskiy, S.A. Il’in, O. A. Sapozhnikov, and V. A. Khokhlova, Uchen. Zapiski Fiz. Fak. Mos. Univ. 4, 134301 (2013).

    Google Scholar 

  12. P. V. Yuldashev, S. M. Shmeleva, S. A. Ilyin, O. A. Sapozhnikov, L. R. Gavrilov, and V. A. Khokhlova, Phys. Med. Biol. 58 (8), 2537–2559 (2013).

    Article  Google Scholar 

  13. V. A. Khokhlova, J. B. Fowlkes, Y. N. Wang, and C. A. Cain, Int. J. Hyperthermia 31 (2), 145–162 (2015).

    Article  Google Scholar 

  14. J. Parsons, C. Cain, G. Abrams, and J. Fowlkes, Ultrasound Med. Biol. 32 (1), 115–129 (2006).

    Article  Google Scholar 

  15. T. D. Khokhlova, M. S. Canney, V. A. Khokhlova, O. A. Sapozhnikov, L. A. Crum, and M. R. Bailey, J. Acoust. Soc. Am. 130 (5), 3498–3510 (2011).

    Article  ADS  Google Scholar 

  16. T. Looi, V. A. Khokhlova, C. Mougenot, K. Hynynen, and J. Drake, in Program Booklet of the 16th Int. Symp. Therapeutic Ultrasound (Tel Aviv, Israel, 2016) pp. 64–66.

    Google Scholar 

  17. W. Kreider, P. V. Yuldashev, O. A. Sapozhnikov, N. Farr, A. Partanen, M. R. Bailey, and V. A. Khokhlova, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 60 (8), 1683–1698 (2013).

    Article  Google Scholar 

  18. H. T. O’Neil, J. Acoust. Soc. Am. 21 (5), 516–526 (1949).

    Article  ADS  Google Scholar 

  19. P. B. Rosnitskiy, P. V. Yuldashev, and V. A. Khokhlova, Acoust. Phys. 61 (3), 301–307 (2015).

    Article  ADS  Google Scholar 

  20. S. A. Tsysar, V. A. Khokhlova, V. D. Svet, A. M. Molotilov, W. Kreider, and O. A. Sapozhnikov, in IEEE Int. Ultrasonics Symp. Proc. (Tours, France, 2016).

    Google Scholar 

  21. L. R. Gavrilov, O. A. Sapozhnikov, and V. A. Khokhlova, Bull. Russ. Acad. Sci.: Phys. 79 (10), 1232–1237 (2015).

    Article  Google Scholar 

  22. V. A. Khokhlova, P. V. Yuldashev, P. B. Rosnitskiy, A. D. Maxwell, W. Kreider, M. R. Bailey, and O. A. Sapozhnikov, in Proc. 45th Ann. Symp. Ultrasonic Industry Assoc. (Seattle, USA, 2016)

    Google Scholar 

  23. S. A. Ilyin, P. V. Yuldashev, V. A. Khokhlova, P. B. Rosnitskiy, O. A. Sapozhnikov, and L. R. Gavrilov, Acoust. Phys. 61 (1), 52–59 (2015).

    Article  ADS  Google Scholar 

  24. J. W. Hand, A. Shaw, N. Sadhoo, S. Rajagopal, R. J. Dickinson, and L. R. Gavrilov, Phys. Med. Biol. 54 (19), 5675–5694 (2009).

    Article  Google Scholar 

  25. P. B. Rosnitskiy, P. V. Yuldashev, V. A. Khokhlova, and B. A. Vysokanov, Acoust. Phys. 62 (2), 151–159 (2016).

    Article  ADS  Google Scholar 

  26. P. B. Rosnitskiy, P. V. Yuldashev, O. A. Sapozhnikov, A. D. Maxwell, W. Kreider, M. R. Bailey, and V. A. Khokhlova, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 2017 (accepted).

    Google Scholar 

  27. O. V. Bessonova, V. A. Khokhlova, M. R. Bailey, M. S. Canney, and L. A. Crum, Acoust. Phys. 55 (4–5), 463–473 (2009).

    Article  ADS  Google Scholar 

  28. L. Marsac, Focalisation ultrasonore adaptative et application à la thérapie du cerveau // Paris 7. Ph. D. thesis. 2013.

    Google Scholar 

  29. S. A. Goss, L. A. Frizzell, and F. Dunn, Ultrasound Med. Biol. 5 (2), 181–186 (1979).

    Article  Google Scholar 

  30. P. Ramaekers, M. Ries, C. T. Moonen, and M. de Greef, in Program of the 15th Int. Symp. for Therapeutic Ultrasound (2015) p. 174.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Rosnitskiy.

Additional information

Original Russian Text © P.B. Rosnitskiy, L.R. Gavrilov, P.V. Yuldashev, O.A. Sapozhnikov, V.A. Khokhlova, 2017, published in Akusticheskii Zhurnal, 2017, Vol. 63, No. 5, pp. 489–500.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosnitskiy, P.B., Gavrilov, L.R., Yuldashev, P.V. et al. On the possibility of using multi-element phased arrays for shock-wave action on deep brain structures. Acoust. Phys. 63, 531–541 (2017). https://doi.org/10.1134/S1063771017050104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017050104

Keywords

Navigation