Skip to main content
Log in

Asymmetric propagation of the first order antisymmetric lamb wave in a tapered plate based on time domain analysis

  • Classical Problems of Linear Acoustics and Wave Theory
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The asymmetric propagation of the first order antisymmetric (A1) Lamb wave in a tapered plate respectively carved with sharp bottom corner and round bottom corner is theoretically investigated. Through numerical simulation of A1 Lamb wave in time domain, we find that when the thickness of the waveguide abruptly decreases to below the cut-off thickness, about half of the A1 mode is converted into the fundamental symmetrical S0 and antisymmetrical A0 modes to pass through the defected region. Furthermore, the transmitted modes A0 and S0 are completely apart from each other and can be quantitatively evaluated. Conversely, when the thickness change is very smooth, most of the energy of A1 Lamb wave is reflected back. It is the unique mode conversion behavior that leads to great transmission difference value of A1 Lamb wave along the opposite directions. Finally, the influence of geometrical parameters on the transmission coefficient is also studied. The higher efficiency and proper working frequency range can be realized by adjusting the slope angle θ, height h 1 and h 2. The simple asymmetric systems will be potentially significant in applications of ultrasound diagnosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106 (8), 084301 (2011).

    Article  ADS  Google Scholar 

  2. Z. J. He, S. S. Peng, Y. T. Ye, Z. W. Dai, C. Y. Qiu, M. Z. Ke, and Z. Y. Liu, Appl. Phys. Lett. 98 (8), 083505 (2011).

    Article  ADS  Google Scholar 

  3. H. X. Sun, S. Y. Zhang, and X. J. Shui, Appl. Phys. Lett. 100 (10), 103507 (2012).

    Article  ADS  Google Scholar 

  4. Y. Li, B. Liang, Z. M. Gu, X. Y. Zou, and J. C. Chen, Appl. Phys. Lett. 103 (5), 053505 (2013).

    Article  ADS  Google Scholar 

  5. H. Jia, M. Z. Ke, C. H. Li, C. Y. Qiu, and Z. Y. Liu, Appl. Phys. Lett. 102 (15), 153508 (2013).

    Article  ADS  Google Scholar 

  6. R. Krishnan, S. Shirrota, Y. Tanaka, and N. Nishiguchi, Solid State Commun. 144 (5–6), 194–197 (2007).

    Article  ADS  Google Scholar 

  7. J. J. Chen, X. Han, and G. Y. Li, J. Appl. Phys. 113 (18), 184506 (2013).

    Article  ADS  Google Scholar 

  8. X. F. Zhu, X. Y. Zou, B. Liang, and J. C. Cheng, J. Appl. Phys. 108 (12), 124909 (2010).

    Article  ADS  Google Scholar 

  9. X. Y. Zou, B. Liang, Y. Yuan, X. F. Zhu, and J. C. Cheng, J. Appl. Phys. 114 (18), 164504 (2013).

    Article  ADS  Google Scholar 

  10. H. X. Ding, L. L. Dai, Z. H. Shen, L. Yuan, and X. W. Ni, Acoust. Phys. 60 (1), 110–114 (2014).

    Article  ADS  Google Scholar 

  11. Y. Li, J. Tu, B. Liang, X. S. Guo, D. Zhang, and J. C. Cheng, J. Appl. Phys. 112 (6), 064504 (2012).

    Article  ADS  Google Scholar 

  12. C. H. Li, M. Z. Ke, Y. T. Ye, S. J. Xu, C. Y. Qiu, and Z. Y. Liu, Appl. Phys. Lett. 105 (2), 023511 (2014).

    Article  ADS  Google Scholar 

  13. A. D. Lapin, Acoust. Phys. 59 (3), 267–271 (2013).

    Article  ADS  Google Scholar 

  14. W. Lin, X. H. Deng, and X. Li, Appl. Acoust. 74 (8), 1018–1021 (2013).

    Article  Google Scholar 

  15. Z. Chen, L. Fan, S. Y. Zhang, and H. Zhang, J. Appl. Phys. 115 (20), 204513 (2014).

    Article  ADS  Google Scholar 

  16. W. Lin, L. Fan. C. M. Gan, Z. M. Zhu, and X. B. Wang, Appl. Acoust. 70 (11–12), 1446–1448 (2009).

    Article  Google Scholar 

  17. Y. W. Yao, Z. L. Hou, Y. J. Cao, and Y. Y. Liu, Physica B: Condens. Matter 388 (1–2), 75–81 (2007).

    Article  ADS  Google Scholar 

  18. P. Hora and O. Cervená, Appl. Comput. Mech. 6 (1), 5–16 (2012).

    Google Scholar 

  19. V. Giurgiutiu, J. Bao, and W. Zhao, Exp. Mech. 43 (4), 428–449 (2003).

    Article  Google Scholar 

  20. K. L. Xu. D. Ta, Z. Q. Su, and W. Q. Wang, Ultrasonics. 54 (1), 395–401 (2014).

    Article  Google Scholar 

  21. O. A. Sapozhnikov and M. A. Smagin, Acoust. Phys. 61 (2), 181–187 (2015).

    Article  ADS  Google Scholar 

  22. J. Gao, J. Yang. L. J. Cui, J. C. Cheng, and M. L. Qian, Ultrasonics. 44 (1), e985–e989 (2006).

    Article  Google Scholar 

  23. Z. Hamitouche, M. E.-C. EI-Kettani, J.-L. Izbicki, and H. Djelouah, Acta Acoust. United Acoust. 95 (5), 789–794 (2009).

    Article  Google Scholar 

  24. M. El Allami, H. Rhimini, A. Nassim, and M. Sidki, Electron. J. Tech. Acoust. Art. 8 (2010).

  25. J. L. Rose, Ultrasonic Guided Waves in Solid Media (Cambridge University Press, 2014).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiu-Jiu Chen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, SY., Chen, JJ., Song, GH. et al. Asymmetric propagation of the first order antisymmetric lamb wave in a tapered plate based on time domain analysis. Acoust. Phys. 63, 393–401 (2017). https://doi.org/10.1134/S1063771017040054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017040054

Keywords

Navigation