Skip to main content
Log in

Researches on the ultrasonic scattering attenuation of carbon fibre reinforced plastics with 2D real morphology void model

  • Physical Fundamentals of Engineering Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

In order to investigate the ultrasonic propagation in carbon fibre reinforced plastics with complex void morphology, the effective mathematical model needs to be established. The current models are oversimplified on void morphology, leading to the significant inconsistency of theoretical calculation with experimental results. In view of the problem, a real morphology void model (RMVM) was established with the idea of image-based modeling. The void morphology was extracted by digital image processing technology, and the material properties were assigned subsequently. As a result of the complex and random void morphology in RMVMs, a non-unique corresponding relationship was verified between porosity P and ultrasonic attenuation coefficient α. In the scatterplot of simulation, about 66 percent of points were plotted within the ±10% error band of fitting line, while almost all the data located at the ±20% error zone. The simulation results showed good consistency with experiments, and it proved the validity of RMVM. The investigation provides a novel model to explore the ultrasonic scattering mechanism for the composite materials containing random voids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Martin, NDT Int. 9 (5), 242–246 (1976).

    Article  Google Scholar 

  2. J. M. Hale and J. N. Ashton, NDT Int. 21 (5), 321–326 (1988).

    Google Scholar 

  3. D. K. Hsu and S. M. Nair, in Progressing of Quantitative Nondestructive Examination, Ed. by D. O. Thompson and D. E. Chimenti (New York, 1987), pp. 1185–1193.

  4. D. K. Hsu and K. M. Uhl, in Progressing of Quantitative Nondestructive Evaluation, Ed. by D. O. Thompson and D. E. Chimenti (New York, 1987), pp. 1175–1184.

  5. M. L. Costa, S. F. M. D. Almeida and M. C. Rezende, Compos. Sci. Technol. 61 (14), 2101–2108 (2001).

    Article  Google Scholar 

  6. P. Olivier, J. Cottu, and B. Ferret, Composites 26 (7), 509–515 (1995).

    Article  Google Scholar 

  7. H. Huang and R. Talreja, Compos. Sci. Technol. 65 (13), 1964–1981 (2005).

    Article  Google Scholar 

  8. L. Lin, X. Zhang, J. Chen, Y. F. Mu, and X. M. Li, Appl. Phys. A-Mater. 103 (4), 1153–1157 (2011).

    Article  ADS  Google Scholar 

  9. L. Lin, J. Chen, X. Zhang, and X. Li, NDT and E Int. 44 (3), 254–260 (2011).

    Article  Google Scholar 

  10. L. Lin, X. Zhang, J. Chen, and X. M. Li, Adv. Mater. Res. 346, 639–643 (2012).

    Article  Google Scholar 

  11. L. Lin, S. S. Ding, J. Chen, X. Y. Liang, and X. M. Li, AIP Conf. Proc. 1430 (1), 1072–1079 (2012).

  12. X. Y. Liang, L. Li, J. Chen, S. S. Ding, and L. I. Xi- Meng, J. Aeronaut. Mat. 33 (3), 81 (2013).

  13. K. Nakahata, F. Schubert, and B. Köhler, in Progressing of Quantitative Nondestructive Evaluation (San Diego, California, USA, 2011), pp. 51–58.

    Google Scholar 

  14. R. L. Smith, Ultrasonics 20 (5), 211–214 (1982).

    Article  Google Scholar 

  15. W. N. Reynolds and R. L. Smith, J. Phys. D Appl. Phys. 17 (1), 109–116 (1984).

    Article  ADS  Google Scholar 

  16. H. B. Huntington, J. Acous. Soc. Am. 22 (3), 362–364 (1950).

    Article  ADS  Google Scholar 

  17. L. L. Rokhlin, Sov. Phys. Acoust. 18 (1), 71–75 (1972).

    Google Scholar 

  18. R. S. Wu and K. Aki, J. Geophys. Res. Solid Earth 90 (B12), 10261–10273 (1985).

    Article  Google Scholar 

  19. R. S. Wu and K. Aki, Pure Appl. Geophys. 128 (10), 49–80 (1988).

    Article  ADS  Google Scholar 

  20. D. Jette and A. Bielajew, Med. Phys. 16 (5), 698–711 (1989).

    Article  Google Scholar 

  21. A. Ishimaru, in Wave Propagation and Scattering in Random Media (Academic press, New York, 1978), pp. 407–460.

    Book  Google Scholar 

  22. V. K. Varadan, Y. Ma, and V. V. Varadan, J. Acoust. Soc. Am. 77 (2), 375–385 (1985).

    Article  ADS  Google Scholar 

  23. L. Lin, M. Luo, H. T. Tian, X. M. Li, and G. P. Guo, in Proc. World Conf. Nondestruc. Testing (Shanghai, China, 2008), pp. 1–9.

    Google Scholar 

  24. D. R. K. Brownrigg, Commun. ACM 27 (8), 807–818 (1984).

    Article  Google Scholar 

  25. D. Chimenti, Physical Ultrasonics of Composites (Oxford University Press, 2011).

    Google Scholar 

  26. X. Liu, Z. Shi, and Y. L. Mo, Soil. Dyn. Earth. Eng. 79 (Part A), 104–107 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Lin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S.S., Jin, S.J., Luo, Z.B. et al. Researches on the ultrasonic scattering attenuation of carbon fibre reinforced plastics with 2D real morphology void model. Acoust. Phys. 63, 490–495 (2017). https://doi.org/10.1134/S1063771017040029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017040029

Keywords

Navigation