Skip to main content
Log in

Application of time reversal to passive acoustic remote sensing of the ocean

  • Ocean Acoustics. Hydroacoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

This paper investigates a novel approach to processing records of ambient noise in the ocean that are measured concurrently in spatially separated locations. The approach is a synthesis of two well-known phase-coherent signal processing techniques. At the first stage of processing, an approximation to the transient acoustic Green function is found by the method of noise interferometry. At the second stage, the approximate Green function is time reversed and back propagated from the location of one of the receivers, thereby producing a focus in the vicinity of the other receiver. Unlike the earlier work, measurements at just two points (rather than vertical array measurements) are used when the sound-propagation range is large compared to the ocean depth. The requirement for optimal focusing of the back-propagated field is shown to lead to extraction of estimates of the unknown physical parameters of the waveguide and, hence, to passive acoustic remote sensing of the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Roux and W. A. Kuperman, J. Acoust. Soc. Am. 117 (1), 131–136 (2005).

    Article  ADS  Google Scholar 

  2. O. I. Lobkis and R. L. Weaver, J. Acoust. Soc. Am. 110 (6), 3011–3017 (2001).

    Article  ADS  Google Scholar 

  3. K. Wapenaar, Phys. Rev. Lett. 93, 254301 (2004).

    Article  ADS  Google Scholar 

  4. O. A. Godin, Phys. Rev. Lett. 97, 054301 (2006).

    Article  ADS  Google Scholar 

  5. D. R. Jackson and D. R. Dowling, J. Acoust. Soc. Am. 89 (1), 171–181 (1991).

    Article  ADS  Google Scholar 

  6. W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, J. Acoust. Soc. Am. 103 (1), 25–40 (1998).

    Article  ADS  Google Scholar 

  7. S. Kim, G. F. Edelmann, W. A. Kuperman, W. S. Hodgkiss, H. C. Song, and T. Akal, J. Acoust. Soc. Am. 110 (2), 820–829 (2001).

    Article  ADS  Google Scholar 

  8. V. A. Zverev, P. I. Korotin, and A. A. Stromkov, Acoust. Phys. 54 (1), 58–64 (2008).

    Article  ADS  Google Scholar 

  9. G. F. Edelmann, T. Akal, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and H. C. Song, IEEE J. Ocean. Eng. 27, 602–609 (2002).

    Article  Google Scholar 

  10. T. C. Yang, IEEE J. Ocean. Eng. 28, 229–245 (2003).

    Article  Google Scholar 

  11. H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, J. Acoust. Soc. Am. 125 (1), 212–217 (2009).

    Article  ADS  Google Scholar 

  12. A. J. Song, M. Badiey, A. E. Newhall, J. F. Lynch, H. A. DeFerrari, and B. G. Katsnelson, IEEE J. Ocean. Eng. 35, 756–765 (2010).

    Article  Google Scholar 

  13. M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).

    Article  Google Scholar 

  14. M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Progr. Phys. 63, 1933–1995 (2000).

    Article  ADS  Google Scholar 

  15. G. Lerosey, J. De Rosny, A. Tourin, and M. Fink, Science 315, 1120–1122 (2007).

    Article  ADS  Google Scholar 

  16. A. A. Lunkov, V. G. Petnikov, and A. A. Stromkov, Acoust. Phys. 56 (2), 228–233 (2010).

    Article  ADS  Google Scholar 

  17. M. G. Brown, O. A. Godin, N. J. Williams, N. A. Zabotin, L. Zabotina, and G. J. Banker, Geophys. Rev. Lett. 41, 5555–5562 (2014).

    Article  ADS  Google Scholar 

  18. O. A. Godin, N. A. Zabotin, L. Zabotina, M. G. Brown, and N. J. Williams, Geosci. Lett. 1, 1–5 (2014).

    Article  Google Scholar 

  19. M. D. Collins, R. J. Cederberg, D. B. King, and S. A. Chin–Bing, J. Acoust. Soc. Am. 100 (1), 178–182 (1996).

    Article  ADS  Google Scholar 

  20. L. M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1980), 2nd ed.

    MATH  Google Scholar 

  21. O. A. Godin, N. A. Zabotin, A. F. Sheehan, and J. A. Collins, J. Geophys. Res. Oceans 118, 1103–1122 (2014).

    Article  ADS  Google Scholar 

  22. K. G. Sabra, P. Roux, and W. A. Kuperman, J. Acoust. Soc. Am. 118 (6), 3524–3531 (2005).

    Article  ADS  Google Scholar 

  23. N. A. Zabotin and O. A. Godin, Acta Acust. United Acust. 97 (1), 44–53 (2011).

    Article  Google Scholar 

  24. X. Zang, M. G. Brown, and O. A. Godin, J. Acoust. Soc. Am. 138 (3), 1325–1333 (2015).

    Article  ADS  Google Scholar 

  25. S. J. Norton, B. J. Carr, and A. J. Witten, J. Acoust. Soc. Am. 119 (5), 2840–2847 (2006).

    Article  ADS  Google Scholar 

  26. A. B. Baggeroer, W. Kuperman, and P. N. Mikhalevsky, IEEE J. Ocean. Eng. 18, 401–424 (1993).

    Article  Google Scholar 

  27. O. A. Godin, Acoust. Phys. 58, 129–138 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Godin, B. G. Katsnelson, Jixing Qin, M. G. Brown or N. A. Zabotin.

Additional information

The article was translated by the authors.

Original Russian Text © O.A. Godin, B.G. Katsnelson, Jixing Qin, M.G. Brown, N.A. Zabotin, Xiaoqin Zang, 2017, published in Akusticheskii Zhurnal, 2017, Vol. 63, No. 3, pp. 283–295.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godin, O.A., Katsnelson, B.G., Qin, J. et al. Application of time reversal to passive acoustic remote sensing of the ocean. Acoust. Phys. 63, 309–320 (2017). https://doi.org/10.1134/S1063771017020038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771017020038

Keywords

Navigation