Acoustical Physics

, Volume 63, Issue 3, pp 309–320 | Cite as

Application of time reversal to passive acoustic remote sensing of the ocean

Ocean Acoustics. Hydroacoustics

Abstract

This paper investigates a novel approach to processing records of ambient noise in the ocean that are measured concurrently in spatially separated locations. The approach is a synthesis of two well-known phase-coherent signal processing techniques. At the first stage of processing, an approximation to the transient acoustic Green function is found by the method of noise interferometry. At the second stage, the approximate Green function is time reversed and back propagated from the location of one of the receivers, thereby producing a focus in the vicinity of the other receiver. Unlike the earlier work, measurements at just two points (rather than vertical array measurements) are used when the sound-propagation range is large compared to the ocean depth. The requirement for optimal focusing of the back-propagated field is shown to lead to extraction of estimates of the unknown physical parameters of the waveguide and, hence, to passive acoustic remote sensing of the ocean.

Keywords

ocean acoustics noise interferometry time reversal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Roux and W. A. Kuperman, J. Acoust. Soc. Am. 117 (1), 131–136 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    O. I. Lobkis and R. L. Weaver, J. Acoust. Soc. Am. 110 (6), 3011–3017 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    K. Wapenaar, Phys. Rev. Lett. 93, 254301 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    O. A. Godin, Phys. Rev. Lett. 97, 054301 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    D. R. Jackson and D. R. Dowling, J. Acoust. Soc. Am. 89 (1), 171–181 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, J. Acoust. Soc. Am. 103 (1), 25–40 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    S. Kim, G. F. Edelmann, W. A. Kuperman, W. S. Hodgkiss, H. C. Song, and T. Akal, J. Acoust. Soc. Am. 110 (2), 820–829 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    V. A. Zverev, P. I. Korotin, and A. A. Stromkov, Acoust. Phys. 54 (1), 58–64 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    G. F. Edelmann, T. Akal, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and H. C. Song, IEEE J. Ocean. Eng. 27, 602–609 (2002).CrossRefGoogle Scholar
  10. 10.
    T. C. Yang, IEEE J. Ocean. Eng. 28, 229–245 (2003).CrossRefGoogle Scholar
  11. 11.
    H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, J. Acoust. Soc. Am. 125 (1), 212–217 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    A. J. Song, M. Badiey, A. E. Newhall, J. F. Lynch, H. A. DeFerrari, and B. G. Katsnelson, IEEE J. Ocean. Eng. 35, 756–765 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).CrossRefGoogle Scholar
  14. 14.
    M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L. Thomas, and F. Wu, Rep. Progr. Phys. 63, 1933–1995 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    G. Lerosey, J. De Rosny, A. Tourin, and M. Fink, Science 315, 1120–1122 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Lunkov, V. G. Petnikov, and A. A. Stromkov, Acoust. Phys. 56 (2), 228–233 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    M. G. Brown, O. A. Godin, N. J. Williams, N. A. Zabotin, L. Zabotina, and G. J. Banker, Geophys. Rev. Lett. 41, 5555–5562 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    O. A. Godin, N. A. Zabotin, L. Zabotina, M. G. Brown, and N. J. Williams, Geosci. Lett. 1, 1–5 (2014).CrossRefGoogle Scholar
  19. 19.
    M. D. Collins, R. J. Cederberg, D. B. King, and S. A. Chin–Bing, J. Acoust. Soc. Am. 100 (1), 178–182 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    L. M. Brekhovskikh, Waves in Layered Media (Academic, New York, 1980), 2nd ed.MATHGoogle Scholar
  21. 21.
    O. A. Godin, N. A. Zabotin, A. F. Sheehan, and J. A. Collins, J. Geophys. Res. Oceans 118, 1103–1122 (2014).ADSCrossRefGoogle Scholar
  22. 22.
    K. G. Sabra, P. Roux, and W. A. Kuperman, J. Acoust. Soc. Am. 118 (6), 3524–3531 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    N. A. Zabotin and O. A. Godin, Acta Acust. United Acust. 97 (1), 44–53 (2011).CrossRefGoogle Scholar
  24. 24.
    X. Zang, M. G. Brown, and O. A. Godin, J. Acoust. Soc. Am. 138 (3), 1325–1333 (2015).ADSCrossRefGoogle Scholar
  25. 25.
    S. J. Norton, B. J. Carr, and A. J. Witten, J. Acoust. Soc. Am. 119 (5), 2840–2847 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    A. B. Baggeroer, W. Kuperman, and P. N. Mikhalevsky, IEEE J. Ocean. Eng. 18, 401–424 (1993).CrossRefGoogle Scholar
  27. 27.
    O. A. Godin, Acoust. Phys. 58, 129–138 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of PhysicsNaval Postgraduate SchoolMontereyUSA
  2. 2.University of HaifaHaifaIsrael
  3. 3.State Key Laboratory of Acoustics, Institute of AcousticsChinese Academy of SciencesBeijingChina
  4. 4.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  5. 5.Department of Electrical, Computer, and Energy EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations