Acoustical Physics

, Volume 62, Issue 5, pp 615–625

Skeletal muscle contraction in protecting joints and bones by absorbing mechanical impacts

Acoustics of Animate Systems. Biomedical Acoustics

Abstract

We have previously hypothesized that the dissipation of mechanical energy of external impact is a fundamental function of skeletal muscle in addition to its primary function to convert chemical energy into mechanical energy. In this paper, a mathematical justification of this hypothesis is presented. First, a simple mechanical model, in which the muscle is considered as a simple Hookean spring, is considered. This analysis serves as an introduction to the consideration of a biomechanical model taking into account the molecular mechanism of muscle contraction, kinetics of myosin bridges, sarcomere dynamics, and tension of muscle fibers. It is shown that a muscle behaves like a nonlinear and adaptive spring tempering the force of impact and increasing the duration of the collision. The temporal profiles of muscle reaction to the impact as functions of the levels of muscle contraction, durations of the impact front, and the time constants of myosin bridges closing, are obtained. The absorption of mechanical shock energy is achieved due to the increased viscoelasticity of the contracting skeletal muscle. Controlling the contraction level allows for the optimization of the stiffness and viscosity of the muscle necessary for the protection of the joints and bones.

Keywords

biomechanics acoustical testing skeletal muscle muscle viscoelasticity muscle contraction skeletal system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Sarvazyan, O. V. Rudenko, S. Aglyamov, and S. Emelianov, Med. Hypotheses 83, 6 (2014).CrossRefGoogle Scholar
  2. 2.
    O. V. Rudenko and A. P. Sarvazyan, Acoust. Phys. 60, 710 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    A. Sarvazyan, in Handbook of Elastic Properties of Solids, Liquids and Gases, Vol. 3. Elastic Properties of Solids: Theory, Elements and Compounds, Novel Materials, echnological Materials, Alloys, and Building Materials, Ed. by M. Levy, H. E. Bass, R.R. Stern, and V. Keppens, (Academic, 2001), Ch. 5, pp. 107–127.Google Scholar
  4. 4.
    A. P. Sarvazyan and C. R. Hill, in Physical Principles of Medical Ultrasonics. Ed. by C. R. Hill, J. C. Bamber, and G. R. TerHaar (Wiley, 2004), Ch. 7, pp. 223–235.Google Scholar
  5. 5.
    E. L. Madsen, H.J. Sathoff, and J. A. Zagzebski, J. Acoust. Soc. Am., 74, 1346 (1983).ADSCrossRefGoogle Scholar
  6. 6.
    T. A. Krouskop, D. R. Dougherty, and F. S. Vinson, J. Rehabil. Res. Dev. 24, 1 (1987).Google Scholar
  7. 7.
    S. F. Levinson, M. Shinagawa, and T. Sato, J. Biomech. 28, 1145 (1995).CrossRefGoogle Scholar
  8. 8.
    E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. O’Brien, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 191 (1996).CrossRefGoogle Scholar
  9. 9.
    J. R. Basford, T. R. Jenkyn, A. Kai-Nan, R. L. Ehman, G. Heers, and K. R. Kaufman, Arch. Phys. Med. Rehabil. 83, 1530 (2002).CrossRefGoogle Scholar
  10. 10.
    S. I. Ringleb, S. F. Bensamoun, Q. Chen, A. Manduca, K. N. An, and R. L. Ehman, J. Magn. Reson. Imaging 25, 301 (2007).CrossRefGoogle Scholar
  11. 11.
    K. Hoyt, T. Kneezel, B. Castaneda, and K. J. Parker, Phys. Med. Biol. 53, 4063 (2008).CrossRefGoogle Scholar
  12. 12.
    S. Chen, M. W. Urban, C. Pislaru, R. Kinnick, Y. Zheng, A. Yao, and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 55 (2009).CrossRefGoogle Scholar
  13. 13.
    M. W. Urban and J. F. Greenleaf, Phys. Med. Biol. 54, 5919 (2009).CrossRefGoogle Scholar
  14. 14.
    M. W. Urban, S. Chen, and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 748 (2009).CrossRefGoogle Scholar
  15. 15.
    T. Deffieux, G. Montaldo, M. Tanter, and M. Fink, IEEE Trans. Med. Imaging 28, 313 (2009).CrossRefGoogle Scholar
  16. 16.
    D. Klatt, S. Papazoglou, J. Braun, and I. Sack, Phys. Med. Biol. 55, 6445 (2010).CrossRefGoogle Scholar
  17. 17.
    J.-L. Gennisson, T. Deffieux, E. Macé, G. Montaldo, M. Fink, and M. Tanter, Ultrasound Med. Biol. 36, 789 (2010).CrossRefGoogle Scholar
  18. 18.
    T. Muraki, Z. J. Domire, M. B. McCullough, Q. Chen, and K. N. An, Clin. Biomech. 25, 499 (2010).CrossRefGoogle Scholar
  19. 19.
    P. Song, S. Chen, Q. Chen, J. F. Greenleaf, and K. N. An, J. Biomech. 46, 2381 (2013).CrossRefGoogle Scholar
  20. 20.
    L. Debernard, G.E. Leclerc, L. Robert, and S. F. Bensamoun, J. Musculoskelet Res. 16, 1350008 (2013).CrossRefGoogle Scholar
  21. 21.
    M. Shinohara, K. Sabra, J. L. Gennisson, M. Fink, and M. Tanter, Muscle Nerve 42, 438 (2010).CrossRefGoogle Scholar
  22. 22.
    G. Dubois, W. Kheireddine, C. Vergari, D. Bonneau, P. Thoreux, P. Rouch, M. Tanter, J. L. Gennisson, and W. Skalli, Ultrasound Med. Biol. 41, 2284 (2015).CrossRefGoogle Scholar
  23. 23.
    A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. Garra, Curr. Med. Imaging Rev. 7, 255 (2011).CrossRefGoogle Scholar
  24. 24.
    K. Uffmann, S. Maderwald, W. Ajaj, C. G. Galban, S. Mateiescu, H. H. Quick, and M. E. Ladd, NMR Biomed. 17, 181 (2004).CrossRefGoogle Scholar
  25. 25.
    S. F. Bensamoun, K. J. Glaser, S. I. Ringleb, Q. Chen, R. L. Ehman, and K. N. An, J. Magn. Reson. Imaging 27, 1083 (2008).CrossRefGoogle Scholar
  26. 26.
    J. L. Gennisson, C. Cornu, S. Catheline, M. Fink, and P. Portero, J. Biomech. 38, 1543 (2005).CrossRefGoogle Scholar
  27. 27.
    L. A. Chernak, R. J. DeWall, K. S. Lee, and D. G. Thelen, Physiol. Measur. 34, 713 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    S. Chatelin, J. L. Gennisson, M. Bernal, M. Tanter, and M. Pernot, Phys. Med. Biol. 60, 3639 (2015).CrossRefGoogle Scholar
  29. 29.
    A. Martin, B. Morlon, M. Pousson, and J. van Hoecke, Eur. J. Appl. Physiol. Occup. Physiol. 73, 157 (1996).CrossRefGoogle Scholar
  30. 30.
    S. Sikdar, Q. Wei, and N. Cortes, Exerc. Sport Sci. Rev. 42, 126 (2014).CrossRefGoogle Scholar
  31. 31.
    J. J. Ballyns, D. Turo, P. Otto, J. P. Shah, J. Hammond, T. Gebreab, L. H. Gerber, and S. Sikdar, J. Ultrasound Med. 31, 1209 (2012).Google Scholar
  32. 32.
    S. Papazoglou, J. Braun, U. Hamhaber, and I. Sack, Phys. Med. Biol. 50, 1313 (2005).CrossRefGoogle Scholar
  33. 33.
    M. Wang, B. Byram, M. Palmeri, N. Rouze, and K. Nightingale, IEEE Trans. Med. Imag. 32, 1671 (2013).CrossRefGoogle Scholar
  34. 34.
    O. V. Rudenko and A. P. Sarvazyan, Acoust. Phys. 52, 720 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    D. Royer, J. L. Gennisson, T. Deffieux, and M. Tanter, J. Acoust. Soc. Am. 129, 2757 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    J. Brum, M. Bernal, J. L. Gennisson, and M. Tanter, Phys. Med. Biol. 59, 505 (2014).CrossRefGoogle Scholar
  37. 37.
    A. F. Huxley, Proc. R. Soc. Biol. 178, 1 (1971).ADSCrossRefGoogle Scholar
  38. 38.
    D. T. Kirkendall and W. E. Garrett Jr, J. Athl. Train. 36, 328 (2001).Google Scholar
  39. 39.
    A. I. King and D. C. Viano, in Biomechanics: Principles and Applications, Ed. by D. J. Schneck and J. D. Bronzino, (CRC Press, 2002), 1st ed., Ch. 6, pp. 107–118.Google Scholar
  40. 40.
    K. P. Granata, D. A. Padua, and S. E. Wilson, J. Electromyogr. Kinesiol. 12, 127 (2002).CrossRefGoogle Scholar
  41. 41.
    H. Shinkai, H. Nunome, M. Isokawa, and Y. Ikegami, Med. Sci. Sports Exerc. 41, 889 (2009).CrossRefGoogle Scholar
  42. 42.
    V. I. Deshcherevskiĭ, Biorheology 7, 147 (1971).Google Scholar
  43. 43.
    A. V. Hill, Proc. R. Soc. Lond. B. 126, 136 (1938).ADSCrossRefGoogle Scholar
  44. 44.
    L. D. Landau, E. M. Lifshitz. Course of Theoretical Physics, Vol. 6. Fluid Mechanics, (Pergamon Press, 1987), § 81.Google Scholar
  45. 45.
    O. V. Rudenko, Acoust. Phys. 60, 398 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Artann Laboratories Inc.TrentonUSA

Personalised recommendations