Advertisement

Acoustical Physics

, Volume 62, Issue 6, pp 694–699 | Cite as

X-ray topographic study of quartz cavities with a triple electrode

  • A. G. Kulikov
  • N. V. Marchenkov
  • A. E. Blagov
  • K. G. Kozhemyakin
  • M. Yu. Nasonov
  • S. S. Pashkov
  • Yu. V. Pisarevskii
  • G. N. Cherpukhina
Physical Acoustics
  • 25 Downloads

Abstract

AT-cut quartz cavities with a triple electrode have been studied. Their main advantage over cavities with an orthogonally directed electric field is that the triple electrode hinders excitation of vibrations on the first mechanical harmonic. A comparison of the parameters of different cavities shows that, in the case of their excitation on the first harmonic, the equivalent resistance of triple-electrode cavities is higher by a factor of 24, their equivalent inductance is higher by a factor of 3, and their Q factor is lower by a factor of 12 compared to the corresponding parameters of conventional cavities. When working on the third harmonic, the parameters of triple-electrode cavity are comparable with those of cavities with an orthogonally directed electric field. An X-ray topographic study of the vibrations of piezoelectric cells in triple-electrode cavities showed a pronounced vibration antinode on the third harmonic, located at the plate center, whereas the corresponding first-harmonic antinode is distorted and diffuse. The values of the Q factor of element vibrations on these harmonics differ by a factor of almost 8. Thus, the use of a triple electrode provides optimal conditions for cavity operation on the third harmonic. There is no need to use any other tools (e.g., introduce an additional resistor) to suppress the first harmonic.

Keywords

quartz cavity harmonics lattice strain distribution ultrasonic load X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Rudenko, Acoust. Phys. 55, 27 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    A. E. Blagov, A. N. Darinskii, M. V. Koval’chuk, Yu. V. Pisarevskii, P. A. Prosekov, and A. V. Targonskii, Acoust. Phys. 59, 506 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    J. R. Vig, Quartz Crystal Resonators and Oscillators for Frequency Control and Timing Applications A Tutorial Rev., 2007. http://www.ieee-uffc.org/frequency-control/learning-vig-tut.aspGoogle Scholar
  4. 4.
    A. E. Karaul’nik, M. E. Karaul’nik, V. M. Komarov, K. V. Sorokin, V. A. Mostyaev, L. A. Boyarskaya, and M. I. Yaroslavskii, Elektron. Tekh. Ser. 5. Radiodet. Radiocomp., No. 4, 44 (1974).Google Scholar
  5. 5.
    D. K. Bowen and B. K. Tanner, High Resolution X-Ray Diffractometry and Topography (Taylor and Francis, London, 2005).Google Scholar
  6. 6.
    K. Haruta and W. J. Spencer, Proc. 20th Ann. Symp. Freq. Control, FortMonmouth, NewJersey, USA, 1966, pp. 1–13.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. G. Kulikov
    • 1
    • 2
  • N. V. Marchenkov
    • 1
    • 2
  • A. E. Blagov
    • 1
    • 2
  • K. G. Kozhemyakin
    • 3
  • M. Yu. Nasonov
    • 3
  • S. S. Pashkov
    • 3
  • Yu. V. Pisarevskii
    • 1
    • 2
  • G. N. Cherpukhina
    • 3
  1. 1.Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  2. 2.National Research Centre “Kurchatov Institute”MoscowRussia
  3. 3.OAO Lit FononMoscowRussia

Personalised recommendations