Skip to main content
Log in

On localization of wheezing respiratory sounds in human lungs by means of intensimetric processing of signals detected on the chest surface

  • Acoustics of Living Systems. Biomedical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

We obtain a set of equations for determining the distance from the chest surface to various sources (monopole, dipole, transverse quadrupole) of wheezing sounds in human lungs. During testing, we experimentally determined anatomically correct estimates for the distances to sources of wheezing sounds in the frequency range of 100–500 Hz. We demonstrate the possibility of resolving the distances to sources of wheezing sounds with different peak frequencies. We analyze the main limitations of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Sen, M. Saraclar, and Y. P. Kahua, Proc. 32th Ann. Int. Conf. IEEE EMBS, Buenos Aires, Argentina, 2010; Book Seriees: IEEE Eng. Med. Biol. Soc. Conf. Proc., pp. 3670–3673.

    Google Scholar 

  2. R. L. H. Murphy, A. Vyshedskiy, V. A. Power-Charnitsky, D. S. Bana, P. M. Marinelli, A. WongTse, and R. Paciej, Respir. Care 49, 1490 (2004).

    Google Scholar 

  3. R. L. H. Murphy, US Patent 5844997, 1998.

    Google Scholar 

  4. M. Kompis, H. Pasterkamp, and G. R. Wodicka, Chest 120, 1309 (2001).

    Article  Google Scholar 

  5. V. I. Korenbaum, Doctoral (Eng.) Dissertation (Vladivostok, 1999).

    Google Scholar 

  6. V. I. Korenbaum, A. A. Tagil’tsev, and Yu. V. Kulakov, Acoust. Phys. 49, 316 (2003).

    Article  ADS  Google Scholar 

  7. V. A. Gordienko and B. I. Goncharenko, Vestn. Mos. Univ., Ser. 3. Fiz., Astron. 35, 93 (1994).

    Google Scholar 

  8. Y. Peng, Z. Dai, H. A. Mansy, R. H. Sandler, R. A. Balk, and T. J. Royston, Med. Biol. Eng. Comput 52, 695 (2014).

    Article  Google Scholar 

  9. C. D. Bertram, Respir. Physiol. Neurobiol. 163, 256 (2008).

    Article  Google Scholar 

  10. J. C. Hardin and J. L. Patterson, Acta Astronaut. 6, 1137 (1979).

    Article  ADS  Google Scholar 

  11. V. I. Korenbaum, M. A. Rasskazova, I. A. Pochekutova, and Yu. Ya. Fershalov, Acoust. Phys. 55, 528 (2009).

    Article  ADS  Google Scholar 

  12. J. C. Hardin and D. S. Pope, AIAA J. 30, 312 (1992).

    Article  ADS  Google Scholar 

  13. V. I. Korenbaum, Yu. V. Kulakov, and A. A. Tagil’tsev, Acoust. Phys. 43, 66 (1997).

    ADS  Google Scholar 

  14. V. I. Korenbaum, A. A. Tagil’tsev, and Yu. V. Kulakov, Acoust. Phys. 44, 322 (1998).

    ADS  Google Scholar 

  15. V. I. Korenbaum and A. A. Tagil’tsev, RF Patent 2496421, Byull. Izobr., 2013, no. 30.

    Google Scholar 

  16. V. I. Korenbaum, A. A. Tagil’tsev, A. E. Kostiv, S. V. Gorovoi, I. A. Pochekutova, G. N. Bondar’, Instrum. Exper. Tech. 51, 296 (2008).

    Article  Google Scholar 

  17. V. I. Korenbaum, A. A. Tagil’tsev, A. I. D’yachenko, and A. E. Kostiv, Acoust. Phys. 59, 474 (2013).

    Article  ADS  Google Scholar 

  18. S. N. Rzhevkin, Course of Lectures on Sound Theory (Mos. Gos. Univ., Moscow, 1960) [in Russian].

    Google Scholar 

  19. E. Skudrzyk, Foundations of Acoustics. Basic Mathematics and Basic Acoustics (Springer-Verlag, New York, 1971), Vol. 2.

    Book  MATH  Google Scholar 

  20. J. J. Fredberg and S. K. Holford, J. Acoust. Soc. Am. 73, 1036 (1983).

    Article  ADS  Google Scholar 

  21. D. Rueter and H. Hauber, Ultraschall in Med. 31, 53 (2010).

    Article  Google Scholar 

  22. V. I. Korenbaum, M. A. Safronova, V. V. Markina, I. A. Pochekutova, and A. I. D’yachenko, Acoust. Phys. 59, 240 (2013).

    Article  ADS  Google Scholar 

  23. A. D. Shiryaev and V. I. Korenbaum, Acoust. Phys. 59, 709 (2013).

    Article  ADS  Google Scholar 

  24. Yu. I. Bobrovnitskii, Acoust. Phys. 44, 6 (1998).

    ADS  Google Scholar 

  25. G. N. Kuznetsov and A. N. Stepanov, Acoust. Phys. 60, 34 (2014).

    Article  ADS  Google Scholar 

  26. V. I. Korenbaum, A. V. Nuzhdenko, A. A. Tagil’tsev, and A. E. Kostiv, Acoust. Phys. 56, 568 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Korenbaum.

Additional information

Original Russian Text © V.I. Korenbaum, A.A. Tagiltcev, S.V. Gorovoy, A.D. Shiryaev, A.E. Kostiv, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 5, pp. 600–608.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenbaum, V.I., Tagiltcev, A.A., Gorovoy, S.V. et al. On localization of wheezing respiratory sounds in human lungs by means of intensimetric processing of signals detected on the chest surface. Acoust. Phys. 62, 600–607 (2016). https://doi.org/10.1134/S1063771016050055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771016050055

Keywords

Navigation