Skip to main content
Log in

On the possibility of representing an acoustic field in shallow water as the sum of normal modes and quasimodes

  • Ocean Acoustics. Hydroacoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Using the example of a shallow-water acoustic waveguide with a homogeneous water layer of constant thickness H lying on a homogeneous fluid absorbing half-space (bottom), we obtain estimates of distance r from a source, for which it is possible to ignore the continuous spectrum for the mode description of the depth dependence of the intensity of a low-frequency sound field in the bottom layer. We have compared two discrete representations of the field using (1) the total set of normal modes and (2) the total set of normal modes and quasimodes. It is shown that in the case when there is at least one normal mode in the channel, additional allowance for quasimodes makes it possible by an order of magnitude to approximate the boundary of applicability of mode theory and on average establish it at a level of r ~ H or less. We explain the functional dependences of the contribution of the continuous spectrum to the total field on the waveguide parameters and find the conditions of its minimization. We present examples of description of the field in the bottom, where the advantage of using quasimodes at short distances is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Alekseev, Method of Normal Waves in Underwater Acoustics (Dal’nauka, Vladivostok, 2006) [in Russian].

    Google Scholar 

  2. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables Ed. by M. Abramowits and I. A. Stegun, (Dover, New York, 1968).

  3. V. A. Grigor’ev, A. A. Lun’kov, and V. G. Petnikov, Memoirs Facul. Phys. Lomonosov Mos. State Univ., No. 6, Art. 146335 (2014).

    Google Scholar 

  4. V. A. Grigor’ev, A. A. Lun’kov, and V. G. Petnikov, Acoust. Phys. 61, 85 (2015).

    Article  ADS  Google Scholar 

  5. A. E. Karbowiak, Proc. IEEE 111, 1781 (1964).

    Google Scholar 

  6. H. G. Unger, Planar Optical Waveguides and Fibers (Clarendon, Oxford, 1977).

    Google Scholar 

  7. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, Boston, 2000).

    Google Scholar 

  8. W. M. Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered Media (McGraw-Hill, New York, 1957).

    MATH  Google Scholar 

  9. C. L. Pekeris, Geol. Soc. Amer. Mem. 27, 1 (1948).

    Article  Google Scholar 

  10. Ch. L. Pekeris, in Sound Propagation in the Ocean Ed. by L. M. Brekhovskikh (InLit, Moscow, 1951), pp. 48–156, [in Russian].

  11. J. A. de Santo, in Acoustics of Ocean, Ed. by Yu. A. Kravtsov (Mir, Moscow, 1982), pp. 16–90, [in Russian].

  12. H. P. Bucker, J. Acoust. Soc. Am. 65, 906 (1979).

    Article  ADS  Google Scholar 

  13. Gao Tain-Fu and Shang Er-Chang, J. Acoust. Soc. Am. 73, 1551 (1983).

    Article  ADS  Google Scholar 

  14. C. L. Bartberger, J. Acoust. Soc. Am. 61, 1643 (1977).

    Article  ADS  Google Scholar 

  15. B. G. Katsnel’son and V. G. Petnikov, Acoustics of Shallow Sea (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  16. B. Katsnelson, V. Petnikov, and J. Lynch, Fundamentals of Shallow Water Acoustics. (Springer, New York, 2012).

    Book  MATH  Google Scholar 

  17. M. J. Buckingham and E. M. Giddens, J. Acoust. Soc. Am. 119, 123 (2006).

    Article  ADS  Google Scholar 

  18. M. R. Osborne, Quart. J. Mech. Appl. Math. 13, 472 (1960).

    Article  MathSciNet  Google Scholar 

  19. M. S. Wengrovitz, The Hilbert–Hankel Transform and Its Application to Shallow Water Ocean Acoustics (Massachusetts Inst. Technol. RLE Tech. Rept, No. 513, 1986).

    Google Scholar 

  20. J. A. Adam, Mathem. Models Methods Appl. Sci. 8, 157 (1998).

    Article  MathSciNet  Google Scholar 

  21. A. G. Sveshnikov and A. N. Tikhonov, Theory of Functions of Complex Variable (Fizmatlit, Moscow, 2005) [in Russian].

    MATH  Google Scholar 

  22. V. D. Krupin, Acoust. Phys. 40, 626 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Grigor’ev.

Additional information

Original Russian Text © V.A. Grigor’ev, V.G. Petnikov, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 6, pp. 681–698.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’ev, V.A., Petnikov, V.G. On the possibility of representing an acoustic field in shallow water as the sum of normal modes and quasimodes. Acoust. Phys. 62, 700–716 (2016). https://doi.org/10.1134/S1063771016050031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771016050031

Keywords

Navigation