Acoustical method of whole-body hydration status monitoring

Abstract

An acoustical handheld hydration monitor (HM) for assessing the water balance of the human body was developed. Dehydration is a critical public health problem. Many elderly over age of 65 are particularly vulnerable as are infants and young children. Given that dehydration is both preventable and reversible, the need for an easy-to-perform method for the detection of water imbalance is of the utmost clinical importance. The HM is based on an experimental fact that ultrasound velocity in muscle is a linear function of water content and can be referenced to the hydration status of the body. Studies on the validity of HM for the assessment of whole-body hydration status were conducted in the Appalachian State University, USA, on healthy young adults and on elderly subjects residing at an assisted living facility. The HM was able to track changes in total body water during periods of acute dehydration and rehydration in athletes and day-to-day and diurnal variability of hydration in elderly. Results of human studies indicate that HM has a potential to become an efficient tool for detecting abnormal changes in the body hydration status.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. P. Sarvazyan, A Tatarinov, and N. Sarvazyan, Ultrasonics, 2005, vol. 43, no. 8, p. 661.

    Article  Google Scholar 

  2. 2.

    A. P. Sarvazyan and A. G. Lyrchikov, in Biomechanics in Medicine and Surgery 1. (Riga, 1986), pp. 353–358.

    Google Scholar 

  3. 3.

    A. P. Sarvazyan, A. G. Lyrchikov, and S. E. Gorelov, Ultrasonics, 1987, vol. 25, no. 4, p. 244.

    Article  Google Scholar 

  4. 4.

    A. P. Sarvazyan., in Handbook of Elastic properties of Solids, Liquids and Gases, Ed. by Bass, L. and Stern, (Academic, 2001), pp. 107–127.

    Google Scholar 

  5. 5.

    B. Hamilton and R. Schwartz, J. Biol. Chem., 1935, vol. 109, p. 745.

    Google Scholar 

  6. 6.

    A. Topchian, A. Tatarinov, N. Sarvazyan, and A. P. Sarvazyan, Ultrasonics, 2006, vol. 44, no. 3, p. 259.

    Article  Google Scholar 

  7. 7.

    A. C. Utter, S. R. McAnulty, A. P. Sarvazyan, M. Query, and M. Landram, J. Strength Cond. Res., 2010, vol. 24, no. 6, p. 1451.

    Article  Google Scholar 

  8. 8.

    J. C. Mentes, J. Am. Nurs., 2006, vol. 106, no. 6, p. 40.

    Article  Google Scholar 

  9. 9.

    R. Lavizzo-Mourey, J. Johnson, and P. Stolley, J. Am. Geriatr. Soc., 1988, vol. 36, no. 3, p. 213.

    Article  Google Scholar 

  10. 10.

    R. Basu and B. D. Ostro, J. Am. Epidemiol., 2008, vol. 168, no. 6, p. 632.

    Article  Google Scholar 

  11. 11.

    R. Basu, Environ Health, 2009, vol. 8, no. 1, p. 40.

    Article  Google Scholar 

  12. 12.

    L. Josseran, N. Caillere, D. Brun-Ney, J. Rottner, L. Filleul, G. Brucker, and P. Astagneu, BMC Med. Inform. Decis. Mak 2009, vol. 9, p. 14.

    Article  Google Scholar 

  13. 13.

    A. D. Weinberg and K. L. Minaker, J. Am. Med. Assoc., 1995, vol. 274, p. 1552.

    Article  Google Scholar 

  14. 14.

    J. M. Schols, C. P. de Groot, T. J. van der Cammen, and M. G. Olde Rikkert, J. Nutr. Health. Aging, 2009, vol. 13, no. 2, p. 150.

    Article  Google Scholar 

  15. 15.

    P. Chassagne, L. Druesne, C. Capet, J. F. Menard, and E. Bercoff, J. Am. Geriatr. Soc., 2006, vol. 54, p. 1225.

    Article  Google Scholar 

  16. 16.

    K. R. Culp, B. Wakefield, M. J. Dyck, P. Z. Cacchione, S. DeCrane, and S. Decker, J. Gerontol. A Biol. Sci. Med. Sci., 2004, vol. 59, no. 8, p. 813.

    Article  Google Scholar 

  17. 17.

    A. Rosler, F. Lehmann, T. Krause, R. Wirth, and W. von Renteln-Kruse, Arch. Gerontol. Geriatr., 2010, vol. 50, no. 3, p. e81.

    Article  Google Scholar 

  18. 18.

    K. M. McConnochie, G. P. Conners, E. Lu, and C. Wilson, Arch. Pediatr. Adolesc. Med., 1999, vol. 153, p. 1233.

    Article  Google Scholar 

  19. 19.

    W. Oh, Fluid and electrolyte management, in Neonatal-Perinatal Medicine: Diseases of the Fetus and Infant. Ed. by Fanaroff, A. A. and Martin, R. J., 6th ed. (St. Louis, Mosby, 1997). pp. 622–638.

    Google Scholar 

  20. 20.

    E. D. B. Goulet, Nutr. Rev., 2012, vol. 70, Suppl. 2, p. S132.

    Article  Google Scholar 

  21. 21.

    E. D. B. Goulet, Brit. J. Sport. Med., 2013, vol. 47, no. 11, p. 679.

    Article  Google Scholar 

  22. 22.

    S. I. Barr, Can. J. Appl. Physiol., 1999, vol. 24, no. 2, p. 164.

    Article  Google Scholar 

  23. 23.

    S. N. Cheuvront, R. Carter, and M. N. Sawka, Curr. Sports Med. Rep., 2003, vol. 2, no. 4, p. 202.

    Article  Google Scholar 

  24. 24.

    M. C. Calhoun, A. Utter, S. R. McAnulty, J. M. McBride, J. Zwetsloot, M. Austin, J. D. Mehlhorn, L. Sommerfield, S. Tsyuryupa, and A. P. Sarvazyan, Proc. Meeting on Acous., 2015, vol. 23, p. 020001.

    Article  Google Scholar 

  25. 25.

    A. Al-Jalal, S. Al-Kaabi, Y. Al-Nassar, and M. Khan, NDT. net The e-Journal of Nondestructive Testing, 2006, vol. 11, no. 6.

  26. 26.

    ASTM F1469-11. Standard Guide for Conducting a Repeatability and Reproducibility Study on Test Equipment for Nondestructive Testing, (ASTM International. West Conshohocken. PA. 2011). wwwastmorg

  27. 27.

    J. E. Muelaner, Gage repeatability and reproducibility, in An Excel Spreadsheet (2014). http://wwwmuelanercom/quality-assurance/gage-r-and-r-excel/

    Google Scholar 

  28. 28.

    Guidance for Industry and FDA Staff–Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers, 2008. http://wwwfdagov/RegulatoryInformation/Guidances/ucm070856htm.

  29. 29.

    G. P. Kenny, F. D. Reardon, W. Zaleski, M. L. Reardon, F. Haman, and M. B. Ducharme, J. Appl. Physiol., 2003, vol. 94, p. 2350.

    Article  Google Scholar 

  30. 30.

    S. A. Goss, R. L. Johnston, and F. Dunn, J. Acoust. Soc. Am. 1978, vol. 64, p. 423.

    ADS  Article  Google Scholar 

  31. 31.

    C. Simon, P. van Baren, and E. S. Ebbini, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1088 (1998).

    Article  Google Scholar 

  32. 32.

    R. Seip and E. Ebbini, IEEE Trans. Biomed. Eng., 1995, vol. 42, p. 828.

    Article  Google Scholar 

  33. 33.

    M. Pernot, M. Tanter, J. Bercoff, K. Waters, and M. Fink, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2004, vol. 51, no. 5, p. 606.

    Article  Google Scholar 

  34. 34.

    L. Dalong and E. S. Ebbini, IEEE Trans. Biomed. Eng., 2010, vol. 57, no. 1, p. 12.

    Article  Google Scholar 

  35. 35.

    M. Bayat, J. Ballard, and E. Ebbini, IEEE Trans. Biomed. Eng., 2015, vol. 62, no. 2, p. 450.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. P. Sarvazyan.

Additional information

Original Russian Text © A.P. Sarvazyan, S.N. Tsyuryupa, M. Calhoun, A. Utter, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 4, pp. 513–522.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarvazyan, A.P., Tsyuryupa, S.N., Calhoun, M. et al. Acoustical method of whole-body hydration status monitoring. Acoust. Phys. 62, 514–522 (2016). https://doi.org/10.1134/S1063771016040175

Download citation

Keywords

  • body hydration
  • hydration monitor
  • ultrasound velocity