Acoustical Physics

, Volume 62, Issue 4, pp 467–477 | Cite as

Numerical study of acoustic radiation dynamics of a Rankine vortex

  • O. A. Doronina
  • P. A. Bakhvalov
  • T. K. Kozubskaya
Atmospheric and Aeroacoustics
  • 29 Downloads

Abstract

The paper continues investigations of a fundamental problem important for understanding the nature of vortex flows: sound radiation by a perturbed Rankine vortex. Results of numerical simulation are presented for both quadrupole and higher-mode radiations. The structure and dynamics of tonal acoustic radiation generated by a vortex are considered in detail. The transition of a Rankine vortex to a perturbed state under small external perturbation is considered. Calculations are performed using the EBR scheme implemented by NOISEtte software.

Keywords

Rankine vortex acoustic radiation numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Lamb, Hydrodynamics (Dover, New York, 1945; Gostekhizdat, Moscow, 1947).MATHGoogle Scholar
  2. 2.
    E. Broadbent and D. Moore, Philos. Trans. R. Soc. London, A: Mathem., Phys., Eng. Sci. 290 1372, 353 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    V. F. Kopiev and E. A. Leontiev, Sov. Phys. Acoust. USSR 29 2, 111 (1983).Google Scholar
  4. 4.
    V. F. Kop’ev and E. A. Leont’ev, Izv. Ross. Akad. Yauk. Fiz. Zhid. Gaza, No. 3, 83 (1987).Google Scholar
  5. 5.
    P. G. Yakovlev, Acoust. Phys. 58 4, 516 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Abalakin and T. K. Kozubskaya, Matem. Modelir. 25 8, 109 (2013).MathSciNetGoogle Scholar
  7. 7.
    I. Abalakin, P. Bakhvalov, and T. Kozubskaya, Int. J. Aeroacoust. 13 3, 207 (2014).Google Scholar
  8. 8.
    I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben’, T. K. Kozubskaya, Vychislit. Metody Program. 13 3, 110 (2012).Google Scholar
  9. 9.
    O. A. Doronina and N. S. Zhdanova, Matem. Modelir. 25 9, 85 (2013).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. A. Doronina
    • 1
  • P. A. Bakhvalov
    • 2
  • T. K. Kozubskaya
    • 2
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyiRussia
  2. 2.Keldysh Institute of Applied MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations