Acoustical Physics

, Volume 62, Issue 2, pp 151–159 | Cite as

Setting boundary conditions on the Khokhlov–Zabolotskaya equation for modeling ultrasound fields generated by strongly focused transducers

  • P. B. Rosnitskiy
  • P. V. Yuldashev
  • B. A. Vysokanov
  • V. A. Khokhlova
Nonlinear Acoustics

Abstract

An equivalent source model is developed for setting boundary conditions on the parabolic diffraction equation in order to simulate ultrasound fields radiated by strongly focused medical transducers. The equivalent source is defined in a plane; corresponding boundary conditions for pressure amplitude, aperture, and focal distance are chosen so that the axial solution to the parabolic model in the focal region of the beam matches the solution to the full diffraction model (Rayleigh integral) for a spherically curved uniformly vibrating source. It is shown that the proposed approach to transferring the boundary condition from a spherical surface to a plane makes it possible to match the solutions over an interval of several diffraction maxima around the focus even for focused sources with F-numbers less than unity. This method can be used to accurately simulate nonlinear effects in the fields of strongly focused therapeutic transducers using the parabolic Khokhlov–Zabolotskaya equation.

Keywords

focusing diffraction parabolic approximation boundary conditions nonlinear waves medical acoustics ultrasound surgery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Gavrilov, Focused Ultrasound of High Intensity in Medicine (Fazis, Moscow, 2013) [in Russian].Google Scholar
  2. 2.
    M. R. Bailey, S. G. Kargl, L. A. Crum, V. A. Khokhlova, and O. A. Sapozhnikov, Acoust. Phys. 49, 369 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    J. Parsons, C. Cain, G. Abrams, and J. Fowlkes, Ultrasound Med. Biol. 32, 115 (2006).CrossRefGoogle Scholar
  4. 4.
    T. D. Khokhlova, M. S. Canney, V. A. Khokhlova, O. A. Sapozhnikov, L. A. Crum, and M. R. Bailey, J. Acoust. Soc. Am. 130, 3498 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    M. S. Canney, M. R. Bailey, L. A. Crum, V. A. Khokhlova, and O. A. Sapozhnikov, J. Acoust. Soc. Am. 124, 2406 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    O. V. Bessonova and V. Wilkens, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 60, 290 (2013).CrossRefGoogle Scholar
  7. 7.
    W. Kreider, P. V. Yuldashev, O. A. Sapozhnikov, N. Farr, A. Partanen, M. R. Bailey, and V. A. Khokhlova, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 60, 1683 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Jaros, A. Rendell, and B. Treeby, Int. J. High Perf. Comput. Appl., 29, 1 (2015).Google Scholar
  9. 9.
    P. B. Rosnitskiy, P. V. Yuldashev, and V. A. Khokhlova, Acoust. Phys. 61, 301 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    P. J. Westervelt, J. Acoust. Soc. Am. 35, 535 (1963).ADSCrossRefGoogle Scholar
  11. 11.
    P. V. Yuldashev and V. A. Khokhlova, Acoust. Phys. 57, 334 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    O. V. Bessonova, V. A. Khokhlova, M. R. Bailey, M. S. Canney, and L. A. Crum, Acoust. Phys. 55, 463 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    E. A. Zabolotskaya and R. V. Khokhlov, Akust. Zh. 15, 35 (1969).Google Scholar
  14. 14.
    J. N. Tjotta, S. Tjotta, and E. H. Vefring, J. Acoust. Soc. Am. 89, 1017 (1991).ADSCrossRefGoogle Scholar
  15. 15.
    G. F. Pinton and G. E. Trahey, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 55, 730 (2008).CrossRefGoogle Scholar
  16. 16.
    T. Kamakura, T. Ishiwata, and K. Matsuda, J. Acoust. Soc. Am. 107, 3035 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    M. F. Hamilton, O. V. Rudenko, and V. A. Khokhlova, Acoust. Phys. 43, 39 (1997).ADSGoogle Scholar
  18. 18.
    M. D. Collins, J. Acoust. Soc. Am. 93, 1736 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    T. Kamakura, H. Nomura, and G. T. Clement, Ultrasonics 53, 432 (2013).CrossRefGoogle Scholar
  20. 20.
    V. M. Levin, O. I. Lobkis, and R. G. Maev, Akust. Zh. 33, 140 (1987).Google Scholar
  21. 21.
    J. V. Strutt, The Theory of Sound (Macmillan, London, 1896; GITTL, Moscow, 1955).Google Scholar
  22. 22.
    H. T. Neil, J. Acoust. Soc. Am. 21, 516 (1949).ADSCrossRefGoogle Scholar
  23. 23.
    O. Sapozhnikov and T. Sinilo, Acoust. Phys. 48, 720 (2002).ADSCrossRefGoogle Scholar
  24. 24.
    P. Rosnitskiy, P. Yuldashev, and V. Khokhlova, Book of Abstracts of 20th Int. Symp. on Nonlinear Acoustics and 2 nd Int. Sonic Boom Forum, 2015, p. 79.Google Scholar
  25. 25.
    J. A. Nelder and R. Mead, J. Computer 7, 308 (1965).CrossRefGoogle Scholar
  26. 26.
    G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, 1977).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • P. B. Rosnitskiy
    • 1
  • P. V. Yuldashev
    • 1
  • B. A. Vysokanov
    • 2
  • V. A. Khokhlova
    • 1
  1. 1.Physics FacultyMoscow State UniversityMoscowRussia
  2. 2.Mechanics–Mathematics FacultyMoscow State UniversityMoscowRussia

Personalised recommendations