Skip to main content
Log in

Sound wave scattering by a spherical scatterer located near an ice surface

  • Classical Problems of Linear Acoustics and Wave Theory
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

An echo signal is simulated, which is reflected from a spherical scatterer located near an ice surface. The homogeneous water medium in which the scatterer is located is assumed semi-infinite. For the scattering coefficients of the sphere, asymptotic formulas are obtained by the saddle point method, which can be used for sufficiently large distances between the source emitting a spherical wave and the scatterer. For the occurring branch cut integrals using the steepest descent method, asymptotic expressions are also obtained. Numerical results are obtained for an acoustically rigid sphere and an ice sphere. The density of the ice medium and speed of longitudinal waves in it coincide with the analogous parameters of the ice cover. In a wide frequency range of 8–12 kHz, echo signals are compared that have been calculated for two models of media: a water half-space bordering an ice half-space and an ice-covered homogeneous waveguide with a fluid bottom under the assumption that the source placed in the water layer is directional. It is shown that in a large distance interval between the source and the spherical scatterer, the half-space model sufficiently accurately describes the echo signal while substantially reducing calculation time (by approximately a factor of 10 for the waveguide with a depth of 200 m and a sandy bottom considered in the paper).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Grigorieva, D. A. Mikhailova, and D. B. Ostrovskiy, Acoust. Phys. 61, 127 (2015).

    Article  ADS  Google Scholar 

  2. V. D. Krupin, Acoust. Phys. 46, 692 (2000).

    Article  ADS  Google Scholar 

  3. P. Alexander, A. Duncan, and N. Bose, Proc. Conf. on Acoustics, Fremantle. Australia, 2012.

    Google Scholar 

  4. V. V. Bogorodskii and V. P. Gavrilo, Ice (Gidrometeoizdat, Leningrad, 1980).[in Russian].

    Google Scholar 

  5. R. H. Hackman and G. S. Sammelmann, J. Acoust. Soc. Am. 84, 1813 (1988).

    Article  ADS  Google Scholar 

  6. L. A. Marnevskaya, Akust. Zh. 15, 579 (1969).

    Google Scholar 

  7. G. C. Gaunaurd and N. Huang, J. Acoust. Soc. Am. 96, 2526 (1994).

    Article  ADS  Google Scholar 

  8. N. Huang and G. C. Gaunaurd, J. Acoust. Soc. Am. 99, 2720 (1996).

    Article  ADS  Google Scholar 

  9. N. S. Grigorieva and G. M. Fridman, Acoust. Phys. 59, 373 (2013).

    Article  ADS  Google Scholar 

  10. L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973).

    Google Scholar 

  11. H. Bateman, and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953). Vol. 1.

  12. J.-P. Sessarego, P. Cristini, N. S. Grigorieva, and G. M. Fridman, J. Comp. Acoust. 20, 1250006 (2012).

    Article  MathSciNet  Google Scholar 

  13. S. G. Kargl and P. L. Marston, J. Acoust. Soc. Am. 88, 1103 (1990).

    Article  ADS  Google Scholar 

  14. A. Kratzer and W. Franz, Transzendente Funktionen (Geest and K.-G. Portig, Leipzig, 1960; InLit, Moscow, 1963).

    Google Scholar 

  15. E. L. Shenderov, Radiation and Dispersion of Waves (Sudostroenie, Leningrad, 1989).[in Russian].

    Google Scholar 

  16. J. A. Fawcett, J. Acoust. Soc. Am. 108, 2791 (2000).

    Article  ADS  Google Scholar 

  17. J. A. Fawcett and R. Lim, J. Acoust. Soc. Am. 114, 1406 (2003).

    Article  ADS  Google Scholar 

  18. A. V. Stashkevich, Sea Acoustics (Sudostroenie, Leningrad, 1966).[in Russian].

    Google Scholar 

  19. A. A. Kleshchev, Hydroacoustical Dispersers (Prima, St. Petersburg, 2012).[in Russian].

    Google Scholar 

  20. R. Lim, J. L. Lopes, R. H. Hackman, and D. B. Todoroff, J. Acoust. Soc. Am. 93, 1762 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Grigorieva.

Additional information

Original Russian Text © N.S. Grigorieva, M.S. Kupriyanov, D.A. Mikhailova, D.B. Ostrovskiy, 2016, published in Akusticheskii Zhurnal, 2016, Vol. 62, No. 1, pp. 10–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorieva, N.S., Kupriyanov, M.S., Mikhailova, D.A. et al. Sound wave scattering by a spherical scatterer located near an ice surface. Acoust. Phys. 62, 8–21 (2016). https://doi.org/10.1134/S1063771016010036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771016010036

Keywords

Navigation