Acoustical Physics

, Volume 61, Issue 3, pp 301–307 | Cite as

Effect of the angular aperture of medical ultrasound transducers on the parameters of nonlinear ultrasound field with shocks at the focus

  • P. B. Rosnitskiy
  • P. V. Yuldashev
  • V. A. Khokhlova
Nonlinear Acoustics

Abstract

Certain modern applications of high-intensity focused ultrasound (HIFU) in medicine use the nonlinear effect of shock front formation in the focal waveform. However, an important problem remains unsolved: determination of transducer parameters that provide the given pressure levels of the shock wave field at the focus required for a specific application. In this paper, simulations based on the Khokhlov-Zabolotskaya equation are performed to test and confirm the hypothesis that angular aperture of the transducer is the main parameter that determines the characteristic amplitude of the shock front and corresponding values for the peak positive and negative pressures at the focus. A criterion for formation of a developed shock in the acoustic waveform, as well as a method for determining its amplitude is proposed. Quantitative dependences of the amplitude of the developed shock and the peak pressures in the wave profile on the angular aperture of the transducer are calculated. The effects of saturation and the range of changes of the shock waveform parameters at the focus are analyzed for a typical HIFU transducer.

Keywords

nonlinear waves focusing diffraction shock front medical acoustics ultrasound surgery histotripsy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Gavrilov, High Intensity Focused Ultrasound in Medicine, (Fazis, Moscow, 2013) [in Russian].Google Scholar
  2. 2.
    T. J. Dubinsky, C. Cuevas, M. K. Dighe, O. Kolokythas, and J. H. Hwang, AJR Am. J. Roentgenol. 190, 191 (2008).CrossRefGoogle Scholar
  3. 3.
    M. R. Bailey, S. G. Kargl, L. A. Crum, V. A. Khokhlova, and O. A. Sapozhnikov, Acoust. Phys. 49, 369 (2003).CrossRefADSGoogle Scholar
  4. 4.
    W. J. Elias, D. Huss, T. Voss, J. Loomba, M. Khaled, E. Zadicario, R. C. Frysinger, S. A. Sperling, S. Wylie, S. J. Monteith, J. Druzgal, B. B. Shah, M. Harrison, and M. Wintermark, New England J. Med. 369, 640 (2013).CrossRefGoogle Scholar
  5. 5.
    E. J. Dorenberg, F. Courivaud, E. Ring, K. Hald, J. A. Jakobsen, E. Fosse, and P. K. Hol, Minim. Invasive Therapy and Allied Technol. 22, 73 (2013).CrossRefGoogle Scholar
  6. 6.
    F. Wu, Z. B. Wang, W. Z. Chen, J. Z. Zou, J. Bai, H. Zhu, K. Q. Li, F. L. Xie, C. B. Jin, H. B. Su, and G. W. Gao, Ultrasound Med. Biol. 30, 245 (2004).CrossRefGoogle Scholar
  7. 7.
    A. Maxwell, O. Sapozhnikov, M. Bailey, L. Crum, Z. Xu, B. Fowlkes, C. Cain, and V. Khokhlova, Acoustics Today 8, 24 (2012).CrossRefGoogle Scholar
  8. 8.
    O. V. Bessonova, V. A. Khokhlova, M. R. Bailey, M. S. Canney, and L. A. Crum, Acoust. Phys. 55, 463 (2009).CrossRefADSGoogle Scholar
  9. 9.
    E. A. Filonenko and V. A. Khokhlova, Acoust. Phys. 47, 468 (2001).CrossRefADSGoogle Scholar
  10. 10.
    M. Canney, V. Khokhlova, O. Bessonova, M. Bailey, and L. Crum, Ultrasound Med. Biol. 36, 250 (2010).CrossRefGoogle Scholar
  11. 11.
    J. Parsons, C. Cain, G. Abrams, and J. Fowlkes, Ultrasound Med. Biol. 32, 115 (2006).CrossRefGoogle Scholar
  12. 12.
    T. D. Khokhlova, M. S. Canney, V. A. Khokhlova, O. A. Sapozhnikov, L. A. Crum, and M. R. Bailey, J. Acoust. Soc. Am. 130, 3498 (2011).CrossRefADSGoogle Scholar
  13. 13.
    J. M. Keller, G. R. Schade, K. Ives, X. Cheng, T. J. Roso, M. Piert, J. Siddiqui, W. W. Roberts, and E. T. Keller, The Prostate 73, 952 (2013).CrossRefGoogle Scholar
  14. 14.
    M. M. Karzova, M. V. Averiyanov, O. A. Sapozhnikov, and V. A. Khokhlova, Acoust. Phys. 58, 81 (2012).CrossRefADSGoogle Scholar
  15. 15.
    E. A. Zabolotskaya and R. V. Khokhlov, Akust. Zh. 15, 35 (1969).Google Scholar
  16. 16.
    V. P. Kuznetsov, Akust. Zh. 16, 467 (1971).Google Scholar
  17. 17.
    C. Perez, H. Chen, T. J. Matula, M. M. Karzova, and V. A. Khokhlova, J. Acoust. Soc. Am. 134, 1663 (2013).CrossRefADSGoogle Scholar
  18. 18.
    M. S. Canney, M. R. Bailey, L. A. Crum, V. A. Khokhlova, O. A. Sapozhnikov, J. Acoust. Soc. Am. 124, 2406 (2008).CrossRefADSGoogle Scholar
  19. 19.
    O. V. Bessonova and V. Wilkens, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 290 (2013).CrossRefGoogle Scholar
  20. 20.
    O. V. Bessonova, V. A. Khokhlova, M. S. Canney, M. R. Bailey, and L. A. Crum, Acoust. Phys. 56, 354 (2010).CrossRefADSGoogle Scholar
  21. 21.
    V. A. Khokhlova, A. D. Maxwell, P. V. Yuldashev, P. B. Rosnitskiy, W. Kreider, O. A. Sapozhnikov, and M. R. Bailey, in Proc. IEEE Int. Ultrasonics Symp., Chicago, 2014 p. 422.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. B. Rosnitskiy
    • 1
  • P. V. Yuldashev
    • 1
  • V. A. Khokhlova
    • 1
  1. 1.Physics FacultyMoscow State UniversityMoscowRussia

Personalised recommendations