Skip to main content
Log in

Numerical simulation of Bragg scattering of sound by surface roughness for different values of the Rayleigh parameter

  • Acoustic Signal Processing and Computer Simulation
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Numerical simulation methods are described for the spectral characteristics of an acoustic signal scattered by multiscale surface waves. The methods include the algorithms for calculating the scattered field by the Kirchhoff method and with the use of an integral equation, as well as the algorithms of surface waves generation with allowance for nonlinear hydrodynamic effects. The paper focuses on studying the spectrum of Bragg scattering caused by surface waves whose frequency exceeds the fundamental low-frequency component of the surface waves by several octaves. The spectrum broadening of the backscattered signal is estimated. The possibility of extending the range of applicability of the computing method developed under small perturbation conditions to cases characterized by a Rayleigh parameter of ≥1 is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Brekhovskikh and Yu. P. Lysanov, Fundamentals of Ocean Acoustics (Springer, 2003).

    Google Scholar 

  2. B. M. Salin and M. B. Salin, Acoust. Phys. 57, 833 (2011).

    Article  ADS  Google Scholar 

  3. B. M. Salin, M. B. Salin, and R. C. Spindel, Acoust. Phys. 58, 220 (2012).

    Article  ADS  Google Scholar 

  4. A. G. Luchinin and A. I. Khil’ko, Acoust. Phys. 51, 182 (2005).

    Article  ADS  Google Scholar 

  5. C. T. Tindle, G. B. Deane, and J. C. Preisig, J. Acoust. Soc. Am. 125, 66 (2009).

    Article  ADS  Google Scholar 

  6. L. M. Brekhovskikh, Dokl. Akad. Nauk SSSR 79, 585 (1951).

    Google Scholar 

  7. M. A. Isakovich, Zh. Eksp. Teor. Fiz. 23, 305 (1952).

    Google Scholar 

  8. E. L. Shenderov, Wave Problems of Hydroacoustics (Sudostroenie, Leningrad, 1972) [in Russian].

    Google Scholar 

  9. M. B. Kanevskii, Theory of Formation of Radiolocation Image of the Ocean Surface (Inst. Prikl. Fiz. Ross. Akad. Nauk, N. Novgorod, 2004) [in Russian].

    Google Scholar 

  10. P. Janssen, The Interaction of Ocean Waves and Wind (Cambridge Univ., Cambridge, 2004).

    Book  Google Scholar 

  11. P. A. Hwang, J. Geophys. Res. 111, C06033 (2006).

    ADS  Google Scholar 

  12. V. I. Titov, V. V. Bakhanov, E. M. Zuikova, A. G. Luchinin, and Yu. I. Troitskaya, Actual Problems in Remote Sensing of the Earth from Space, 7, 273 (2010) [in Russian].

    Google Scholar 

  13. A. V. Slyunyaev and A. V. Sergeeva, Fund. Prikl. Gidrofizika 5(1), 24 (2012) [in Russian].

    Google Scholar 

  14. L. S. Dolin and M. I. Kondratyeva, Radiophysics and Quantum Electronics 38(1–2), 93 (1995).

    ADS  Google Scholar 

  15. B. M. Salin and M. B. Salin, Methods of measurement the three-dimensional wind waves spectra, based on the processing of video images of the sea surface // arXiv:1303.5248 (2013).

    Google Scholar 

  16. J. V. Toporkov and M. A. Sletten, IEEE Trans. Geosci. Remote Sens. 50, 2986 (2012).

    Article  ADS  Google Scholar 

  17. E. I. Thorsos, J. Acoust. Soc. Am. 83, 78 (1988).

    Article  ADS  Google Scholar 

  18. P. H. Dahl, J. Acoust. Soc. Am. 105, 2155 (1999).

    Article  ADS  Google Scholar 

  19. G. A. Maksimov, V. A. Larichev, and K. V. Khoroshenkov, Acoust. Phys. 58, 139 (2012).

    Article  ADS  Google Scholar 

  20. N. Tsingos, C. Dachsbacher, S. Lefebvre, and M. Dellepiane, Proc. Eurograph. Symp. on Rendering Techn., Grenoble, France, 2007.

  21. V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, J. Europ. Mech. B: Fluids 21, 283 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. A. I. Dyachenko, in Proc. 2nd Int. Conf. “Frontiers of Nonlinear Physics,” N. Novgorod, Russia. Inst. Appl. Phys. Russ. Acad. Sci., 2005, pp. 204–209.

  23. S. M. Joshi and M. J. Isakson, J. Acoust. Soc. Am. 129, 2630 (2011).

    Article  ADS  Google Scholar 

  24. E. L. Shenderov, Sound Radiation and Dispersion (Sudostroenie, Leningrad, 1989) [in Russian].

    Google Scholar 

  25. S. Kirkup, The Boundary Element Method in Acoustics Integrated Sound Software, 1998. http://www.boundary-element-method.com)

    Google Scholar 

  26. S. M. Rao, J. Acoust. Soc. Am. 130, 1792 (2011).

    Article  ADS  Google Scholar 

  27. G. Canepa and D. C. Calvo, Proc. ECUA-2012, Edinburgh, UK, 2012, vol. 34,Pt. 3, pp. 770–777.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Salin.

Additional information

Original Russian Text © M.B. Salin, A.S. Dosaev, A.I. Konkov, B.M. Salin, 2014, published in Akusticheskii Zhurnal, 2014, Vol. 60, No. 4, pp. 413–425.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salin, M.B., Dosaev, A.S., Konkov, A.I. et al. Numerical simulation of Bragg scattering of sound by surface roughness for different values of the Rayleigh parameter. Acoust. Phys. 60, 442–454 (2014). https://doi.org/10.1134/S1063771014040186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771014040186

Keywords

Navigation