Skip to main content
Log in

Transducer profile effect on the second harmonic level

  • Nonlinear Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The measurement of nonlinear parameter of the propagating medium using finite amplitude techniques is based on the detection of the second harmonic generated nonlinearly in the investigated medium. This method requires an analytical expression for the second harmonic. Analytical expressions have been derived for the Gaussian source. For other shapes than Gaussian, a set of Gaussian beams can be used to approximate the pressure distribution at the source. Gaussian coefficients, in the literature, are provided for a uniform source. However, the sources used in many applications radiate non-uniformly because of the manner the piezoelectric element is fixed and because of Lamb waves generated in transducer’s active element. This is of a great importance to derive an analytical expression for the second harmonic for different profile “excitation” of the transducer. Our model is based on the quasilinear theory and a set of Gaussian beams. We used the K-Prony method in order to compute the Gaussian coefficients for each of the uniform, exponential, elliptic and Bessel sources. Using the obtained Gaussian coefficients we showed that the second harmonic magnitude is varying respectively to the used source’s profile. For the measurement of the nonlinear parameter one needs to compute the appropriate values of the Gaussian parameters according to the profile of the used source. One can also use the Gaussian parameters for the uniform source with a correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Labat, J. P. Remenieras, O. B. Matar, A. Ouahabi, and F. Patat, Ultrasonics 38, 292 (2000).

    Article  Google Scholar 

  2. W. K. Law, L. A. Frizzell, F. Dunn, J. Acoust. Soc. Am. 69, 1210 (1981).

    Article  ADS  Google Scholar 

  3. F. Dunn, W. K. Law, and L. A. Frizzell, Ultrasonics Symposium Proceeding (IEEE, New York, 1981).

    Google Scholar 

  4. A. Chitnalah, D. Kourtiche, L. Allies, and M. Nadi, in Proc. 10th Int. Congr. Sound Vibration, Stockholm, 2003.

  5. A. Chitnalah, D. Kourtiche, H Jakjoud, and M Nadi, Electronic Journal “Technical Acoustics” 13, (2007).

  6. D. Kourtiche, L. Allies, A. Chitnalah, and M. Nadi, Meas. Sci. Technol. 12, 1990 (2001).

    Article  ADS  Google Scholar 

  7. G. R. Harris, Y. Liu, S. Maruvada, and P. M. Gammell, in Proc. 2007 IEEE Ultrasonics Symp. IEEE, New York, 2007, p. 2072.

  8. D. Cathignol, O. A. Sapozhnikov, and J. Zhang, J. Acoust. Soc. Am. 101, 1286 (1997).

    Article  ADS  Google Scholar 

  9. J. A. Jensen and N. B. Svendsen, IEEE Trans. Ultrason. Ferroelect. Freq. Cont. 39, 262 (1992).

    Article  Google Scholar 

  10. O. V. Rudenko, S. I. Soluyan, and R. V. Khokhlov, Sov. Phys.-Acoust. 19, 556 (1973).

    Google Scholar 

  11. B. K. Novikov, O. V. Rudenko, and V. I. Timoshenko, Nonlinear Underwater Acoustics (American Institute of Physics, New-York, 1987).

    Google Scholar 

  12. D. Kourtiche, L. Ait Ali, A. Chitnalah, and M. Nadi, in Proc. 23th Annual EMBS Internat. Conf., Istanbul, Turkey, 2005.

  13. H. Jakjoud, A. Chitnalah, N. Aouzale, and D. Kourtiche, J. Acoust. Soc. Am. 123, 3455 (2008).

    Article  ADS  Google Scholar 

  14. H. Jakjoud, A. Chitnalah, N. Aouzale, and D. Kourtiche, in Proc. Int. Conf. on Approximation Methods and Numerical Modeling in Environment and Natural Resources, Granada, Spain, 2007.

  15. J. Durnin, Opt. Soc. Am. 4, 651 (1987).

    Article  ADS  Google Scholar 

  16. D. Ding and Z. Lu, Appl. Phys. Lett. 68, 608 (1995).

    Article  ADS  Google Scholar 

  17. S. Nachef, D. Cathignol, J.N. Tjotta, A. M. Berg, and S. Tjotta, J. Acoust. Soc. Am. 98, 2303 (1995).

    Article  ADS  Google Scholar 

  18. V. A. Khokhlova, R. Souchon, J. Tavakkoli, O. A. Sapozhnikov, and D. Cathignol, J. Acoust. Soc. Am. 110, 95 (2001).

    Article  ADS  Google Scholar 

  19. O. V. Bessonova, V. A. Khokhlova, M. R. Bailey, M. S. Canney, and L. A. Crum, Acoust. Phys. 55, 463 (2009).

    Article  ADS  Google Scholar 

  20. M. S. Canney, M. R. Bailey, L. A. Crum, V. A. Khokhlova, and O. A. Sapozhnikov, J. Acoust. Soc. Am. 124, 2406 (2008).

    Article  ADS  Google Scholar 

  21. O. A. Sapozhnikov, Y. A. Pishchalnikov, and A. V. Morozov, Acoust. Phys. 49, 354 (2003).

    Article  ADS  Google Scholar 

  22. O. A. Sapozhnikov, A. E. Ponomarev, and M. A. Smagin, Acoust. Phys. 52, 324 (2006).

    Article  ADS  Google Scholar 

  23. S. A. Tsysar, V. D. Sinelnikov, and O. A. Sapozhnikov, Acoust. Phys. 57, 94 (2011).

    Article  ADS  Google Scholar 

  24. E. A. Zabolotskaya and R. V. Khokhlov, Sov. Phys.-Acoust. 15, 40 (1969).

    Google Scholar 

  25. V. P. Kuznetsov, Sov. Phys.-Acoust. 16, 548 (1970).

    Google Scholar 

  26. V. E. Kunitsyn and O. V. Rudenko, Sov. Phys.-Acoust. 24, 549 (1978).

    Google Scholar 

  27. O. V. Rudenko and S. I. Soluyan. Theoretical Foundations of Nonlinear Acoustics (Plenum, New-York, 1977).

    Book  MATH  Google Scholar 

  28. M. F. Hamilton, Sound beams, in Nonlinear Acoustics, Ed. by M. F. Hamilton and D. T. Blackstock (Academic, 1998).

    Google Scholar 

  29. J. J Wen and M. A. Breazeale, J. Acoust. Soc. Am. 83, 1762 (1988).

    Article  ADS  Google Scholar 

  30. L. W. Schmerr, Jr., A. L. Lopez-Sanchez, and A. Sedov, Ultrason. 50, 600 (2010).

    Article  Google Scholar 

  31. S. I. Aannosen, T. Barkve, J. N. Tjotta, and S. Tjotta, J. Acoust. Soc. Am. 75, 749 (1983).

    Article  ADS  Google Scholar 

  32. H. Jakjoud, PhD thesis (Cadi Ayyad University, 2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jakjoud.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakjoud, H., Chitnalah, A. & Aouzale, N. Transducer profile effect on the second harmonic level. Acoust. Phys. 60, 261–268 (2014). https://doi.org/10.1134/S1063771014030075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771014030075

Keywords

Navigation