Skip to main content
Log in

Effective parameters and energy of acoustic metamaterials and media

  • Classical Problems of Linear Acoustics and Wave Theory
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

An approach is proposed to describe a general form of acoustic media, in particular, acoustic metamaterials, based on their modeling with the simplest discrete periodic structures. The parameters of the discrete models, determined from the dispersion equation, are taken as the effective parameters of the modeled media. Transfer to an effective continuous medium is achieved by uniform distribution of these parameters over the length of the periodicity cell. It is shown that all of the wave motion characteristics of the medium, including the energy characteristics, are expressed through the effective parameters thus introduced. The necessary formulas are derived. Examples are given. The proposed method is useful for designing acoustic materials with the given wave properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodical Structures (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  2. Topics in the Mathematical Modeling of Composite Materials, Ed. by A. V. Cherkaev and R. Kohn (Birkhauser-Verlag, Basel, 1997).

    Google Scholar 

  3. S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials (Elsevier, Amsterdam, 1999).

    Google Scholar 

  4. Special Issue on Acoustic Metamaterials, J. Acoust. Soc. Am. 132, Part 2, 2783 (2012).

    Article  Google Scholar 

  5. V. A. Burov, V. B. Voloshinov, K. V. Dmitriev, and N. V. Polikarpova, Phys.-Usp. 54, 1165 (2011).

    Article  ADS  Google Scholar 

  6. N. Fang, S. Zhang, and L. Yin, Phys. Rev. Lett. 102, 194301 (2009).

    Article  ADS  Google Scholar 

  7. S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, Reverse Doppler Effect of Sound, vol. 2, arXiv: 0901.2772 (2009).

  8. J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, Nat. Mater. 8, 931 (2009).

    Article  ADS  Google Scholar 

  9. J. B. Pendri and J. Li, New J. Phys. 10, 115032 (2008).

    Article  ADS  Google Scholar 

  10. D. Torrent and J. Sanchez-Dehesa, New J. Phys. 9, 323 (2007).

    Article  ADS  Google Scholar 

  11. Yu. I. Bobrovnitskii, K. D. Morozov, and T. M. Tomilina, Acoust. Phys. 56, 127 (2010).

    Article  ADS  Google Scholar 

  12. Yu. I. Bobrovnitskii, M. D. Genkin, V. P. Maslov, and A. V. Rimskii-Korsakov, Wave Propagation in Constructions from Thin Rods and Plates (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  13. F. R. Gantmakher, Theory of Matrices (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  14. L. Brillouin and M. Parodi, Wave Propagation in Periodical Structures (Dover, New York, 1953; Inostrannaya Literatura, Moscow, 1959).

    Google Scholar 

  15. Yu. I. Bobrovnitskii, Acoust. Phys. 58, 30 (2012).

    Article  ADS  Google Scholar 

  16. Yu. I. Bobrovnitskii, Acoust. Phys. 59, 1 (2013).

    Article  ADS  Google Scholar 

  17. R. W. Cottle, Linear Algebra and Its Applications 8, 189 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  18. Yu. I. Bobrovnitskii, Acoust. Phys. 57, 442 (2011).

    Article  ADS  Google Scholar 

  19. H. Lamb, Proc. London Math. Soc., Ser. 2 1, 473 (1904).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Bobrovnitskii.

Additional information

Original Russian Text © Yu.I. Bobrovnitskii, 2014, published in Akusticheskii Zhurnal, 2014, Vol. 60, No. 2, pp. 137–144.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrovnitskii, Y.I. Effective parameters and energy of acoustic metamaterials and media. Acoust. Phys. 60, 134–141 (2014). https://doi.org/10.1134/S1063771014020018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771014020018

Keywords

Navigation