Skip to main content
Log in

Numerical simulation of gas bubble motion in a flow-through resonator

  • Physical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The problem of gas bubble motion in an acoustic resonator with a fluid flow is solved using numerical methods. It is shown that the distribution of the bubble concentration, which is nonuniform over the resonator length, is formed upon homogeneous introduction of bubbles. The problem on the bubble concentration distribution the along the resonator axis (with fluctuations of the bubble introduction period taken into account) is considered, and the fluctuation parameters are determined at which the periodic structure of the concentration distribution is preserved. The distribution of bubbles with different sizes over the resonator length is determined. It is shown that a resonator with a fluid flow accomplishes bubble selection by size (the average bubble concentration in the resonator increases with an increase in bubble size). The field in the resonator was calculated taking into account the effect of bubbles on sound velocity and damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. K. Bjerknes, Fields of Force (Columbia U.P., New York, 1906).

    Google Scholar 

  2. P. J. Westervelt, J. Acoust. Soc. Am. 23, 312 (1951).

    Article  MathSciNet  ADS  Google Scholar 

  3. L. A. Crum and D. A. Nordling, J. Acoust. Soc. Am. 52, 294 (1972).

    Article  ADS  Google Scholar 

  4. L. A. Crum, J. Acoust. Soc. Am. 50, 157 (1971).

    Article  ADS  Google Scholar 

  5. A. I. Eller, J. Acoust. Soc. Am. 43, 170 (1968).

    Article  ADS  Google Scholar 

  6. K. Yosioka and Y. Kawasima, Acustica 5, 167 (1955).

    Google Scholar 

  7. V. S. Fedotovskii and T. N. Vereshchagina, Acoust. Phys. 55, 735 (2009).

    Article  ADS  Google Scholar 

  8. V. A. Akulichev and V. I. Il’ichev, Acoust. Phys. 51, 128 (2005).

    Article  ADS  Google Scholar 

  9. I. N. Didenkulov, L. M. Kustov, A. I. Mart’yanov, and N. V. Pronchatov-Rubtsov, Acoust. Phys. 57, 241 (2011).

    Article  ADS  Google Scholar 

  10. T. G. Leighton, The Acoustic Bubble (Academic Press, London, 1994).

    Google Scholar 

  11. Al. A. Doinikov, Phys. Fluids 14, 1420 (2002).

    Article  ADS  Google Scholar 

  12. E. M. Agrest and V. L. Korets, Sov. Akust. Zh. 24, 257 (1978).

    Google Scholar 

  13. Physical Foundations of Ultrasound Technology, Ed. by L. D. Rozenberg (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  14. T. N. Pashovkin and D. G. Sadikova, Acoust. Phys. 55, 584 (2009).

    Article  ADS  Google Scholar 

  15. P. E. Tokmakov, S. N. Gurbatov, I. N. Didenkulov, and N. V. Pronchatov-Rubtsov, Vestn. NNGU, Iss. 1(4), 31 (2006).

    Google Scholar 

  16. L. P. Gor’kov, Dokl. Akad. Nauk SSSR 140, 88 (1961).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Theoretical Physics, vol. 6, Fluid Mechanics (Pergamon, London, 1987; Fizmatlit, Moscow, 2003).

    Google Scholar 

  18. G. I. Marchuk, Methods of Computational Mathematics (Nauka, Moscow 1977) [in Russian].

    Google Scholar 

  19. Physical Principles of Medical Ultrasonics, 2nd ed. Ed. by C. R. Hill, J. C. Bamber, and G. R. ter Haar (Wiley, Chichester, 2004; Mir, Moscow, 1989).

    Google Scholar 

  20. K. Klei and G. Medvin, Acoustical Oceanography (Mir, Moscow, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tikhonov.

Additional information

Original Russian Text © V.A. Tikhonov, I.N. Didenkulov, N.V. Pronchatov-Rubtsov, 2013, published in Akusticheskii Zhurnal, 2013, Vol. 59, No. 4, pp. 445–451.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tikhonov, V.A., Didenkulov, I.N. & Pronchatov-Rubtsov, N.V. Numerical simulation of gas bubble motion in a flow-through resonator. Acoust. Phys. 59, 393–398 (2013). https://doi.org/10.1134/S1063771013040155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771013040155

Keywords

Navigation