Skip to main content
Log in

Effect of slow dynamics on elastic properties of materials with residual and shear strains

  • Nonlinear Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The effects of fast and slow dynamics in acoustic resonators from rock and metal samples from the D16 microcrystalline aluminum alloy are studied using resonance ultrasonic spectroscopy. Before the experiment, residual shear strains were artificially created in the metal samples. A decrease in the elasticity modulus in the fast dynamics process has been revealed in resonators from rock and the D16 alloy with residual strains. Based on an analysis of the experimental results, the following conclusion was drawn: the experimentally observed slow dynamics effect cannot be explained by thermoelastic effects alone. The slow dynamics effect is to a great extent related to metastable states of the defect structure the latter passes through to due to the force action (dynamic or static) applied to the sample. After its removal, the defect structure slowly relaxes to its equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Gedroits, L. K. Zarembo, and V. A. Krasil’nikov, Dokl. Akad. Nauk SSSR 150, 515 (1963).

    Google Scholar 

  2. L. K. Zarembo and V. A. Krasilnikov, Introduction in Nonlinear Acoustics (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  3. O. V. Rudenko, Phys.-Usp. 49(1), 69 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  4. R. A. Guyer and P. A. Johnson, Physics Today 52, 30 (1999).

    Article  Google Scholar 

  5. S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev, Waves and Structures in Nonlinear Media with Dispersion (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  6. Universality of Nonclassical Nonlinearity, Ed. by P. Delsanto (Springer-Verlag, New York, 2006).

    Google Scholar 

  7. O. V. Rudenko, Defektoskopiya (8), 24 (1993).

    Google Scholar 

  8. O. V. Rudenko, A. I. Korobov, and M. Yu. Izosimova, Acoust. Phys. 56, 151 (2010).

    Article  ADS  Google Scholar 

  9. A. I. Korobov, O. V. Rudenko, and M. Y. Izossimova, Proc. 20th Int. Cong. on Acoustics. ICA (Sydney, 2010).

    Google Scholar 

  10. L. A. Ostrovsky and P. A. Johnson, Rivista Del Nuovo Cimento 24(7), 1 (2001).

    Google Scholar 

  11. P. Johnson and A. Sutin, J. Acoust. Soc. Am. 117(1), 124 (2005).

    Article  ADS  Google Scholar 

  12. A. I. Korobov, Yu. A. Brazhkin, and N. V. Shirgina, Acoust. Phys. 58, 90 (2012).

    Article  ADS  Google Scholar 

  13. A. I. Korobov, Yu. A. Brazhkin, and E. S. Sovetskaya, Acoust. Phys. 56, 446 (2010).

    Article  ADS  Google Scholar 

  14. A. I. Korobov and M. Yu. Izosimova, Acoust. Phys. 52, 589 (2006).

    Article  ADS  Google Scholar 

  15. M. Yu. Izosimova, A. I. Korobov, and O. V. Rudenko, Acoust. Phys. 52 153 (2009).

    Article  ADS  Google Scholar 

  16. A. Korobov, A. Romanov, and A. Morozov, IOP Conf. Ser. Mater. Sci. Eng. 42, 012029 (2012). http://iopscience.iop.org/1757-899X/42/1/012029, doi: 10.1088/1757-899X/42/1/012029

    Article  Google Scholar 

  17. V. S. Averbakh, A. V. Lebedev, A. P. Maryshev, and V. I. Talanov, Acoust. Phys. 52, 211 (2009).

    Article  ADS  Google Scholar 

  18. M. A. Mironov, I. A. Shelomikhina, O. M. Zozulya, and I. B. Esipov, Acoust. Phys. 58, 117 (2012).

    Article  ADS  Google Scholar 

  19. M. Bentahar, H. El Aqra, R. El Guerjouma, M. Griffa, and M. Scalerandi, Phys. Rev., B: Condens. Matter Mater. Phys. 73, 014116 (2006).

    Article  ADS  Google Scholar 

  20. P. P. Delsanto and M. Scalerandi, Phys. Rev., B: Condens. Matter Mater. Phys. 68, 064107 (2003).

    Article  ADS  Google Scholar 

  21. R. Guyer, J. TenCate, and P. A. Johnson, Phys. Rev. Lett. 82, 3280 (1999).

    Article  ADS  Google Scholar 

  22. V. Zaitsev, B. Castagnede, and V. Gusev, Phys. Rev. Lett. 90, 075501 (2003).

    Article  ADS  Google Scholar 

  23. V. Yu. Zaitsev, V. E. Gusev, V. E. Nazarov, and B. Kastan’ede, Acoust. Phys. 51,Suppl. (2005).

    Google Scholar 

  24. O. Vakhnenko, V. Vakhnenko, and T. J. Shankland, Phys. Rev., E 70, 15602 (2004).

    Article  ADS  Google Scholar 

  25. J. A. TenCate, Pure Appl. Geophys. 168, 2211 (2011).

    Article  ADS  Google Scholar 

  26. E. Smith and R. A. Guyer, Phys. Rev. Lett. 85, 1020 (2000).

    Article  ADS  Google Scholar 

  27. L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 7. The Theory of Elasticity (Nauka, Moscow, 1987; Pergamon, Oxford, 1993).

    Google Scholar 

  28. Physical Values. A Handbook (Energoatomizdat, Moscow, 1991) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Korobov.

Additional information

Original Russian Text © A.I. Korobov, N.I. Odina, D.M. Mekhedov, 2013, published in Akusticheskii Zhurnal, 2013, Vol. 59, No. 4, pp. 438–444.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korobov, A.I., Odina, N.I. & Mekhedov, D.M. Effect of slow dynamics on elastic properties of materials with residual and shear strains. Acoust. Phys. 59, 387–392 (2013). https://doi.org/10.1134/S106377101304009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377101304009X

Keywords

Navigation