Skip to main content
Log in

The influence of a nonuniform acoustic field on small-scale processes at a heterogeneous boundary

  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

An experiment is conducted on estimating the velocity of a Schlichting boundary flow arising when a focused field falls on a rigid boundary in a liquid. The velocity of a small-scale Schlichting flow is determined by an indirect method from the characteristics of the cocurrent Rayleigh flow using the particle image velocimetry method. The velocity of the Schlichting flow attained in experiments gives us the possibility of significantly accelerating mass-transfer processes at a heterogeneous boundary, which is confirmed by experimental results on acoustic intensification of rapid growth of salt monocrystals conducted under strictly controlled laboratory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Physics and Technology of Power Ultrasound. Physical Principles of Ultrasonic Technology, Ed. by L. D. Rozenberg (Nauka, Moscow, 1970), pp. 515–578 [in Russian].

    Google Scholar 

  2. L. G. Loĭtsyansky, Mechanics of Liquid and Gas (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  3. G. Schlichting, Boundary Layer Theory (McGraw-Hill, New York, 1955; Mir, Moscow, 1974).

    MATH  Google Scholar 

  4. L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Physical Acoustics (Nauka, Moscow, 1966).

    Google Scholar 

  5. M. E. Arkhangel’skiĭ, Akust. Zh. 12, 273 (1966) [Sov. Phys. Acoust. 12, 241 (1966)].

    Google Scholar 

  6. M. E. Arkhangel’skiĭ and I. N. Kanevskiĭ, Akust. Zh. 15, 178 (1969) [Sov. Phys. Acoust. 15, 155 (1969)].

    Google Scholar 

  7. R. J. Adrian, Ann. Rev. Fluid Mech. 23, 261 (1991).

    Article  ADS  Google Scholar 

  8. B. G. Lucas and T. G. Muir, J. Acoust. Soc. Am. 72, 1289 (1982).

    Article  ADS  Google Scholar 

  9. V. A. Braĭlovskaya, V. V. Zil’berberg, and L. V. Feoktistova, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 71 (2001).

  10. V. P. Ershov, D. A. Kas’yanov, V. I. Rodchenkov, and D. A. Sergeev, Kristallografiya 58, 370 (2008) [Crystallogr. Rep. 58, 339 (2008)].

    Google Scholar 

  11. V. I. Bredikhin, V. P. Ershov, V. V. Korolikhin, V. N. Lizyakina, S. Yu. Potapenko, and N. V. Khlyunev, J. Cryst. Growth 84, 509 (1987).

    Article  ADS  Google Scholar 

  12. V. P. Ershov, D. A. Kas’yanov, and V. I. Rodchenkov, in Proc. of the 20th Session of Russ. Acoust. Soc. (GEOS, Moscow, 2004), Vol. 2, pp. 59–63.

    Google Scholar 

  13. V. P. Ershov, Candidate’s Dissertation in Mathematical Physics (Novg. Gos. Univ., Nizh. Novgorod, 2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kurin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurbatov, S.N., Deryabin, M.S., Kasyanov, D.A. et al. The influence of a nonuniform acoustic field on small-scale processes at a heterogeneous boundary. Acoust. Phys. 56, 856–860 (2010). https://doi.org/10.1134/S1063771010060096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771010060096

Navigation