Skip to main content
Log in

Nonlinear theory of waves in solid state with cardinally changing crystalline structure

  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A nonlinear theory of propagating periodic and nonlinear solitary waves (like kinks and solitons) related to the motion of defects in crystals and of specific periodic waves into which the former ones transform in the field of the compression stress was developed. The role of intense tension stress leading to the heavy structural rearrangement of the crystal as a result of the effect of the external stress on the interatomic potential barriers was taken into account as well. Crystals with a complex lattice consisting of two sublattices were considered. Arbitrarily large displacements of sublattices were analyzed. The nonlinear theory is based on an additional element of the translational symmetry typical for complex lattices but not introduced earlier in solid-state physics. The variational equations of macroscopic and microscopic displacements turn out to be a nonlinear generalization of the linear equations of acoustic and optical modes obtained by Carman, Born, and Huang Kun. The microscopic displacement fields are described by the nonlinear sine-Gordon equation. In the one-dimensional case, exact solutions of the nonlinear equations were found and their features were revealed. In the case of two-dimensional (2+1) fields, new methods of the exact solutions of the sine-Gordon equation were developed. They describe the interaction of the nonlinear waves with the structural inhomogeneities of solid state due to the external fields of stress and deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born and Kun Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1985; Inostr. Liter., Moscow, 1958).

    Google Scholar 

  2. A. M. Kosevich, Theory of Crystal Lattice. Physical Mechanics of Crystals (Vishcha shkola, Kharkov, 1988) [in Russian].

    Google Scholar 

  3. I. A. Kunin, Theory of Elastic Media with Microstructure (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  4. E. Cosserat, Theorie des corps deformables (Lib. Sci. Hermann et Fils, Paris, 1909) [in French].

    Google Scholar 

  5. V. I. Erofeev and V. M. Rodyushkin, Akust. Zh. 38, 1116 (1992) [Sov. Phys. Acoust. 38, 611 (1992)].

    ADS  Google Scholar 

  6. A. I. Potapov and V. M. Rodyushkin, Akust. Zh. 47, 407 (2001) [Acoust. Phys. 47, 347 (2001)].

    Google Scholar 

  7. S. A. Lisina, A. I. Potapov, and V. F. Nesterenko, Akust. Zh. 47, 685 (2001) [Acoust. Phys. 47, 598 (2001)].

    Google Scholar 

  8. O. V. Rudenko, A. I. Korobov, and M. Yu. Izosimova, Akust. Zh. 55, 172 (2009) [Acoust. Phys. 55, 153 (2009)].

    Google Scholar 

  9. E. L. Aero, J. Eng. Mathem. 55, 81 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  10. E. L. Aero and A. N. Bulygin, Izv. Ross. Akad. Nauk: Mekh. Tverd. Tela, No. 5, 170 (2007).

  11. E. L. Aero and A. N. Bulygin, Vych. Mekh. Sploshn. Sred 1(1), 14 (2008).

    Google Scholar 

  12. A. V. Porubov, E. L. Aero, and G. A. Maugin, Phys. Rev. E 79, 046608 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).

    MATH  Google Scholar 

  14. P. G. De Gennes, The Physics of Liquid Crystals (Claredon, Oxford, 1974).

    Google Scholar 

  15. P. Guéret, IEEE Trans. Magnet., 751 (1975).

  16. P. L. Chebyshev, Usp. Mat. Nauk 1(2), 38 (1946).

    MATH  Google Scholar 

  17. V. G. Bykov, Nonlinear Wave Processes in Geological Media (Dal’nauka, Vladivostok, 2000) [in Russian].

    Google Scholar 

  18. A. S. Davydov, Solitons in Bioenergetics (Naukova Dumka, Kiev, 1986) [in Russian].

    MATH  Google Scholar 

  19. L. A. Takhtadzhyan and L. D. Faddeev, Teor. Mat. Fiz. 21, 160 (1974).

    Google Scholar 

  20. M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1968).

    Google Scholar 

  21. J. Frenkel and T. Kontorova, J. Phys. Acad. Sci. USSR, 137 (1939).

  22. R. M. Miura, Backlund Transformations, the Inverse Scattering Method, Solitons, and Their Applications, Lecture Notes Math. vol. 515 (Springer, Berlin, 1976).

    Google Scholar 

  23. R. Hirota, J. Phys. Soc. Jpn., 1459 (1972).

  24. S. L. Sobolev, Tr. Matem. Inst. Steklova 5, 259 (1934).

    Google Scholar 

  25. H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion: On the Basis of Maxwell’s Equations (Dover, New York, 1955).

    MATH  Google Scholar 

  26. E. L. Aero, A. N. Bulygin, and Yu. V. Pavlov, Teor. Mat. Fiz. 158, 370 (2009) [Theor. Math. Phys. 158, 313 (2009)].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. L. Aero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aero, E.L., Bulygin, A.N. Nonlinear theory of waves in solid state with cardinally changing crystalline structure. Acoust. Phys. 56, 811–830 (2010). https://doi.org/10.1134/S1063771010060059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771010060059

Keywords

Navigation