Skip to main content
Log in

Brownian motion in a solitary potential well in a bounded solid structure

  • Physical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The motion of a heavy Brownian particle in a low-dimensional bounded solid structure under the effect of a phonon’s excitation fluctuations is considered. Because of the finiteness of the system, the fluctuation spectrum has zero spectral density at zero frequency. The effect of this kind of noise, which is conditionally called “green” noise, is studied both analytically by using the averaging method and numerically on the basis of predictor-corrector algorithms. The effective potential is introduced, and its form is shown to govern the particle dynamics. Considering a Gaussian potential well (a trap) as an example, it is demonstrated that green noise leads to abrupt phase transitions in the system as a result of very small parameter variations (a catastrophe-type effect). The results are compared with the case of white noise in an unbounded structure. From numerical calculations, it follows that the boundedness of the structure, which changes the noise spectrum, favors a considerable increase in the lifetime of the particle in the trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Kramers, Physica 7, 284 (1940).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. P. Hänggi and P. Talkner, Rev. Mod. Phys. 62, 251 (1990).

    Article  ADS  Google Scholar 

  3. V. I. Mel’nikov, Phys. Rep. 209, 1 (1991).

    Article  ADS  Google Scholar 

  4. H. Risken, The Fker-Planck Equation (Springer, Berlin, Heidelberg, 1996).

    Google Scholar 

  5. P. Hänggi and P. Jung, Adv. Chem. Phys. 89, 239 (1995).

    Article  Google Scholar 

  6. S. M. Rytov, Introduction to Statistical Radiophysics (Nauka, Moscow, 1976), Vol. 1, part 1 [in Russian].

    Google Scholar 

  7. W. Horsthemke and P. Lefever, Noise-Induced Transitions (Springer, Heidelberg, 1984; Mir, Moscow, 1987).

    MATH  Google Scholar 

  8. V. I. Cherednik and M. Yu. Dvoesherstov, Akust. Zh. 51, 550 (2005) [Acoust. Phys. 51, 469 (2005)].

    Google Scholar 

  9. M. V. Kurbatov and S. A. Rybak, Akust. Zh. 45, 370 (1999) [Acoust. Phys. 45, 326 (1999)].

    Google Scholar 

  10. H. A. T. Bethe, Phys. Rev. 66, 163 (1944).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. E. Simiu, M. Frey, and R. Melnikov, J. Eng. Mech. 122, 263 (1996).

    Article  Google Scholar 

  12. C. A. Guz and M. V. Sviridov, Phys. Lett. A 240, 43 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. S. A. Guz, Yu. G. Krasnikov, and M. V. Sviridov, in Acoustics of Inhomogeneous Media, Ed. by S. A. Rybak (MFTI, Moscow, 2001), pp. 157–166 [in Russian].

    Google Scholar 

  14. P. V. Pavlov and A. V. Khhlov, Solid State Physics (Vyssh. Shkola, Moscow, 1985) [in Russian].

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, 2nd ed. (Nauka, Moscow, 1964; Pergamon, Oxford, 1980), Vol. 2.

    Google Scholar 

  16. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radio Physics. Random Fields (Nauka, Moscow, 1978), Part 2, Vol. 2 [in Russian].

    Google Scholar 

  17. S. A. Guz and M. V. Sviridov, Chaos 11, 605 (2001).

    Article  ADS  Google Scholar 

  18. S. A. Guz, Zh. Eksp. Teor. Fiz. 122, 188 (2002) [JETP 95, 166 (2002)].

    Google Scholar 

  19. A. D. Ventzel and M. I. Freidlin, Random Perturbations of Dynamical Systems (Nauka, Moscow, 1979; Springer, New York, 1984).

    Google Scholar 

  20. S. A. Guz, I. G. Ruzavin, and M. V. Sviridov, Phys. Lett. A 274, 104 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. R. Mannella and V. Palleschi, Phys. Rev. A 40, 3381 (1989).

    Article  ADS  Google Scholar 

  22. S. A. Guz, R. Mannella, and M. V. Sviridov, Phys. Lett. A 317, 233 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Sviridov.

Additional information

Original Russian Text © S.A. Guz, M.G. Nikulin, M.V. Sviridov, 2010, published in Akusticheskiĭ Zhurnal, 2010, Vol. 56, No. 1, pp. 16–25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz, S.A., Nikulin, M.G. & Sviridov, M.V. Brownian motion in a solitary potential well in a bounded solid structure. Acoust. Phys. 56, 14–23 (2010). https://doi.org/10.1134/S1063771010010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771010010033

Keywords

Navigation