Skip to main content
Log in

The efficiency of ultrasonic oscillations transfer into the load

  • Physical Basis of Engineering Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The results of ultrasonic action to the substances have been presented. It is examined, the correlation between the electrical parameters of ultrasonic equipment and acoustic performances of the ultrasonic field in treating the medium, the efficiency of ultrasonic technological facility, and the peculiarities of oscillations introduced into the load under cavitation development. The correlation between the acoustic powers of oscillations securing the needed level of cavitation and desired technological effect, and the electrical parameters of the ultrasonic facility, first of all, the power, is established. The peculiarities of cavitation development in liquids with different physical-chemical properties (including the molten low-melting metals) have been studied, and the acoustic power of oscillations introduced into the load under input variation of electric power to the generator has been also estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. O. Abramov, O. V. Abramov, V. V. Artem’ev, et al., Power Ultrasound in Metallurgy and Mechanical Engineering, Ed. by O. V. Abramova and V. M. Prikhod’ko (Yanus-K, Moscow, 2006) [in Russian].

    Google Scholar 

  2. Chemistry with Utrasound, Ed. by T. Mason (Elsevier, New York, 1990; Mir, Moscow, 1993).

    Google Scholar 

  3. Yu. I. Kitagorodski, in Ultrasonic Technology (Metallurgiya, Moscow, 1974), pp. 220–267 [in Russian].

    Google Scholar 

  4. D. A. Gershgal and V. M. Fridman, Ultrasonic Technological Apparatus (Énergiya, Moscow, 1976) [in Russian].

    Google Scholar 

  5. Description of the Ultrasonic Generator UZG 3–4 Type (MRTZ Informational Sheet).

  6. Description of the Magnetostriction Transformer PMS Type 15A-18 (MRTZInformation Sheet).

  7. Description of the Ultrasonic Devices of the Branson Firm (Branson Informational Sheet).

  8. Description of the Ultrasonic Devices of the Sonic and Material Firm (Sonic and Material Informational Sheet).

  9. Description of the Ultrasonic Devices of the Martin Walter Firm (Martin Walter Informational Sheet).

  10. Description of the Ultrasonic Devices of the Dr. Hischler Firm (Dr. Hischler Informational Sheet).

  11. Description of the Ultrasonic Devices of the Telsonic Firm (Telsonic Informational Sheet).

  12. L. D. Rozenberg, Physics and Technique of Power Ultrasound, in 3 vols. (Nauka, Moscow, 1967, 1968, 1970) [in Russian].

    Google Scholar 

  13. A. Crowford, Industrial Ultrasonics (Loughborough Univ. of Technology, 1969).

  14. K. Suslick, Ultrasound: its Chemical, Physical, and Biological Effects (VCH, 1988).

  15. U. Neis, Application of Power Ultrasonic in Physical and Chemical Processing (Propeg, 2001).

  16. W. L. Nyborg, Acoustical Streaming, Physical Acoustics (Academic Press, 1965), Vol. 2, pp. 109–176.

    Google Scholar 

  17. L. K. Zarembo, in High Intensity Ultrasonic Fields (Nauka, Moscow, 1968; Plenum Press, New York, 1971).

    Google Scholar 

  18. Z. A. Gol’dberg, in High Intensity Ultrasonic Fields (Nauka, Moscow, 1968; Plenum Press, New York, 1971).

    Google Scholar 

  19. A. D. Pernik, Cavitation Problems (Sudostroenie, Moscow, 1966) [in Russian].

    Google Scholar 

  20. R. Knapp, J. Daily, and F. Hammit, Cavitation (McGraw Hill, New York, 1970; Mir, Moscow, 1974).

    Google Scholar 

  21. G. V. Flynn, in Methods and Instruments for Ultrasonic Study (Mir, Moscow, 1971), pp. 127–189 [in Russian].

    Google Scholar 

  22. V. A. Akulichev, in High Intensity Ultrasonic Fields (Nauka, Moscow, 1968; Plenum Press, New York, 1971).

    Google Scholar 

  23. L. Crum, Phys. Today (1994), pp. 22–29.

  24. W. Lauterborn, Cavitation. Encyclopedia of Acoustics (Wiley, New York, 1997).

    Google Scholar 

  25. W. Lauterborn, J. Acoust. Soc. Am. 88, 1061 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  26. B. Langenecker, Rev. Sci. Industr. 37, 103 (1969).

    Article  ADS  Google Scholar 

  27. E. G. Shvidkovski, N. A. Tyapunina, and E. P. Belozerova, Kristallografiya 7, 473 (1962) [Sov. Phys. Crystallogr. 7, 378 (1962)].

    Google Scholar 

  28. I. G. Polotski and D. I. Ovsienko, Fiz. Met. Metalloved. 21, 744 (1966).

    Google Scholar 

  29. V. F. Kazantsev, Vopr. Sudostroen., Ser. Akust. 12, 44 (1979).

    Google Scholar 

  30. A. V. Kulemin, Ultrasound and Diffusion in Metals (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  31. Ultrasonic Technology, Ed. by B. A. Agranat (Metallurgiya, 1974) [in Russian].

  32. O. Abramov, High Intensity Ultrasounds, Theory and Industrial Application (Gordon and Breach, 1998).

  33. E. Kikuchi, Ultrasonic Transducers (Corona, Tokyo, 1969; Mir, Moscow, 1972).

    Google Scholar 

  34. I. I. Teumin, Techn. Inform. Byull. OKB of Ultrasonic and High-Frequency Devices 4, 2 (1960).

    Google Scholar 

  35. V. F. Kazantsev, Design Calculation of Ultrasonic Transducers for Technological Equipment (Mashinostroenie, Moscow, 1980) [in Russian].

    Google Scholar 

  36. H. Nodveld, Acoustica 4, 466 (1954).

    Google Scholar 

  37. A. Perkins, Ultrasonics 4, 193 (1964).

    Article  Google Scholar 

  38. I. I. Teumin, Ultrasonic Oscillation Systems (Mashgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  39. I. I. Teumin, Ultrasonic Waveguide Emission Systems (Mashgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  40. I. I. Teumin, in Origins of Powerful Ultrasound (Nauka, Moscow, 1967), pp. 207–287 [in Russian].

    Google Scholar 

  41. A. E. Kolesnikov, Ultrasonic Measurements (Izd-vo Standartov, Moscow, 1970) [in Russian].

    Google Scholar 

  42. M. A. Margulis and I. M. Margulis, in Proc. of the 8th Conf. of Eur. Soc. of Sonochemistry, Villasimus, Italy, 2002, p. 26.

  43. I. M. Margulis, Akust. Zh. 51, 698 (2005) [Acoust. Phys. 51, 695 (2005)].

    Google Scholar 

  44. O. V. Abramov, V. O. Abramov, O. M. Gradov, S. I. Nikitneko, Ph. Moisy, and P. Blanc, in Proc. of UIA (USA, 2000), p. 21.

  45. T. Mason, Advances in Sonochemistry, in 4 vols. (JAI Press, 1989, 1991, 1993, 1996).

  46. Yu. S. Astashkin and O. V. Abramov, in Electrophysical and Electrochemical Processing Methods (Mashprom, 1972), Vol. 9, pp. 13–18 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Abramov.

Additional information

Original Russian Text © O.V. Abramov, V.O. Abramov, M.S. Mullakaev, V.V. Artem’ev, 2009, published in Akusticheskiĭ Zhurnal, 2009, Vol. 55, No. 6, pp. 828–844.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramov, O.V., Abramov, V.O., Mullakaev, M.S. et al. The efficiency of ultrasonic oscillations transfer into the load. Acoust. Phys. 55, 894–909 (2009). https://doi.org/10.1134/S1063771009060244

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771009060244

PACS numbers

Navigation