Skip to main content
Log in

Functional evaluation of auditory system in patients with cochlear implant using electrically evoked auditory brainstem responses

  • Acoustics of Living Systems. Biological Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Aim

The objective of this study is to evaluate the recovery of hearing function of auditory pathway after cochlear implantation by extracting the characterizations of electrically evoked auditory brainstem responses (EABR). The purpose of this study was to explore a reality and possible EABR test mode in clinical applications, rather than strict animal research.

Methods

53 patients received Nucleus 24 cochlear implant. The EABR tests were performed with a stimulus frequency of 100 Hz or less and a pulse width of 25, 50, and 75 µs/phase. The EABR signals were recorded from three electrodes (electrode 3, 10, and 20), simultaneously. The latency of the EABR wave III and V, the EABR threshold and the positive appearance rate of the EABR waves were measured.

Results

This study found that during EABR tests, the artifacts under the alternate polarity stimulus were smaller than those under the monopolarity stimulus. A similar result was found that the artifacts collected on the contra lateral side were smaller than that on the same lateral side. The latency of the EABR waves prolonged with the increase of the stimulus frequency. When the high cut-off frequency of the band-pass filter altered from 1.5 kHz to 3 kHz, the latency of the EABR wave V shortened, but the latency maintained constant from 3 kHz to 25 kHz. When the low cut-off frequency was changed from 100 Hz to 0.002 Hz, the latency of the EABR wave V maintained constant. In addition, it was found that the EABR threshold lowered with increasing the pulse width of the stimulus. This study indicated that the EABR threshold of the signals collected from the electrode 20 were significantly (p < 0.01) lower than those obtained from the electrode 3 and 10. However, no statistically significant difference in the EABR threshold existed between the signals collected from the electrode 3 and 10 (p > 0.05). Moreover, the latency of the EABR wave III and V at the electrode 3 was significantly (p < 0.01) longer than that at the electrode 10 and 20, and the latency of the wave III and V at the electrode 10 was significantly (p < 0.01) longer than that at the electrode 20. The positive appearance rate of the EABR waves was 96.22%.

Conclusion

The EABR tests with proper parameters were designed in this study. The characterizations of the EABR waves including amplitude, latency and threshold were extracted at different electrodes. The EABR test provides an effective method to evaluate the functions of the auditory pathway in patients after cochlear implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Kileny, T. A. Zwolan, A. Boerst, et al., Am. J. Otol. 18(6), 90 (1997).

    Google Scholar 

  2. C. J. Brown, Curr. Opin. Otolaryngol. Head Neck. Surg. 11, 383 (2003).

    Article  Google Scholar 

  3. B. M. Clopton and F. A. Spelman, Ann. Otol. Rhinol. Laryngol. Suppl. 191, 26 (2003).

    Google Scholar 

  4. E. H. Toh and W. M. Luxford, Otolaryngol. Clin. North. Am. 35, 325 (2002).

    Article  Google Scholar 

  5. S. Burdo, S. Razza, F. di Berardino, et al., Acta Otol. Rhinol. Laryngol. Ital. 26(2), 69 (2006).

    Google Scholar 

  6. S. Mason, Int. J. Audiol. 43(Suppl.), S33 (2004).

    Google Scholar 

  7. P. R. Kileny and T. A. Zwolan, Int. J. Audiol. 43(Suppl.), S16 (2004).

    ADS  Google Scholar 

  8. K. A. Gordon, B. C. Papsin, and R. V. Harrison, Ear. Hear. 25, 447 (2004).

    Article  Google Scholar 

  9. Yingfu Pan, J. Clin, Evoked Potentials (Press of Public Health, Beijing, 1999), pp. 320–321.

    Google Scholar 

  10. S. C. Jian and D. Gu, Clinical Audiology (Beijing Med. Univ., Peking Union Med. College, 1999), pp. 274–279.

  11. E. Truy, S. Gallego, J. M. Chanal, et al., Laryngoscope 108, 554 (1998).

    Article  Google Scholar 

  12. L. R. Aubert and G. P. Clarke, Brit. J. Audiology 28, 121 (1994).

    Article  Google Scholar 

  13. T. Kubo, K. Yamamoto, Y. Iwaki, et al., Acta Otolaryngol. 121, 257 (2001).

    Article  Google Scholar 

  14. P. A. Wackym, J. B. Firszt, W. Gaggl, et al., Laryngoscope 114, 71 (2004).

    Article  Google Scholar 

  15. G. K. van Wermeskerken, A. F. van Olphen, and G. A. van Zanten, Int. J. Audiol. 45, 589 (2006).

    Article  Google Scholar 

  16. P. Prado-Guitierrez, L. M. Fewster, J. M. Heasman, et al., Hear Res. 215, 47 (2006).

    Article  Google Scholar 

  17. M. L. Hughes and P. J. Abbas, J. Acoust. Soc. Am. 119, 1527 (2006).

    Article  ADS  Google Scholar 

  18. M. J. Hay-McCutcheon, C. J. Brown, and P. J. Abbas, J. Acoust. Soc. Am. 118, 2444 (2005).

    Article  ADS  Google Scholar 

  19. M. Polak, A. Hodges, and T. Balkany, Otol. Neurotol. 26, 639 (2005).

    Article  Google Scholar 

  20. J. H. Allum, J. K. Shallop, M. Hotz, et al., Scand. Audiol. 19, 263 (1990).

    Google Scholar 

  21. J. J. Briaire and J. H. Frijns, Hear Res. 205, 143 (2005).

    Article  Google Scholar 

  22. M. D. Eisen and K. H. Franck, J. Assoc. Res. Otolaryngol. 6, 160 (2005).

    Article  Google Scholar 

  23. D. Cafarelli Dees, N. Dillier, W. K. Lai, et al., Audiol. Neurootol. 10, 105 (2005).

    Article  Google Scholar 

  24. K. A. Gordon, B. C. Papsin, and R. V. Harrison, Ear. Hear. 25, 447 (2004).

    Article  Google Scholar 

  25. C. A. Miller, P. J. Abbas, M. J. Hay-McCutcheon, et al., Hear Res. 198, 75 (2004).

    Article  Google Scholar 

  26. C. L. Runge-Samuelson, S. Drake, and P. A. Wackym, Otol. Neurotol. 29, 174 (2008).

    Article  Google Scholar 

  27. A. H. Kim et al., Otol Neurotol. (2008).

  28. M. Hey, I. Kevanishvili, H. von Specht, K. Begall, and Z. Kevanishvili, Georgian Med. News, 43–49 (2007).

  29. C. A. Miller, P. J. Abbas, and J. T. Rubinstein, Hear Res. 135, 1 (1999).

    Article  Google Scholar 

  30. N. Dillier, W. K. Lai, B. Almqvist, et al., Ann. Otol. Rhinol. Laryngol. 111, 407 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Zeng.

Additional information

The text is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhang, Q., Wang, Q. et al. Functional evaluation of auditory system in patients with cochlear implant using electrically evoked auditory brainstem responses. Acoust. Phys. 55, 857–865 (2009). https://doi.org/10.1134/S1063771009060207

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771009060207

PACS numbers

Navigation