Skip to main content
Log in

Deconvolution of complex echo signals by the maximum entropy method in ultrasonic nondestructive inspection

  • Acoustic Signal Processing and Computer Simulation
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

The problem of inversion of convolution with the echo signal point source function is considered with the use of the regularization and maximum entropy method and further reconstruction of two-dimensional images by the method of projection in the spectral domain. The inverse convolution problem is solved for the complex-valued signal that is obtained from the real valued signal through the Hilbert transform. Numerical and experimental simulation is performed. A possibility of enhancing the echo signal along the ray’s resolution and of lowering the spectrum’s noise level with the use of complex signals (pseudo-random sequences) is demonstrated. The results are compared with those obtained using the autoregression method and the reference hologram method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Badalyan and E. G. Bazulin, Akust. Zh. 34, 222 (1988) [Sov. Phys. Acoust. 34, 132 (1988)].

    ADS  Google Scholar 

  2. K. Mayer, R. Markelein, K. J. Langenberg, and T. Kreutter, Ultrasonics 28, 241 (1990).

    Article  Google Scholar 

  3. F. Takahashi, Y. Nagashima, I. Tanaka, et al., in Proc. of the 1st Intern. Conf. on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components, 20–22 Oct., 1998 (Amsterdam, Netherlands, 1998), pp. 223–225.

  4. L. M. Soroko, Holography and Coherent Optics (Nauka, Moscow, 1971; Plenum Press, New York, 1980).

    Google Scholar 

  5. Toyokatsu Miyashita, Horst Schwelick, and Werner Kessel, Acoust. Imaging 14, 247 (1984).

    Google Scholar 

  6. E. G. Bazulin, Akust. Zh. 39, 213 (1993) [Acoust. Phys. 39, 113 (1993)].

    Google Scholar 

  7. E. G. Bazulin, Defektoskopiya, No. 10, 9 (1995).

  8. M. Faur, P. Morisseau, and L. Poradis, in Proc. of the 7th Eur. Conf. on Nondestructive Testing, Copenhagen, 26–29 May, 1998, p. 2429.

  9. S. L. Marple, Jr., Numerical Spectral Analysis (Mir, Moscow, 1990).

    Google Scholar 

  10. BS 7706, Guide to Calibration and Setting-up of the Ultrasonic Time of Flight Diffraction (TOFD) Technique for the Detection, Location and Sizing of Flows (1993), p. 36.

  11. Nondestructive Control, Handbook, in 7 vols., Vol. 3: Ultrasonic Control, Ed. by I. N. Ermolova and Yu. V. Lange (Mashinostroenie, Moscow, 2004) [in Russian].

    Google Scholar 

  12. V. G. Badalyan and E. G. Bazulin, Akust. Zh. 35, 784 (1989) [Sov. Phys. Acoust. 35, 457 (1989)].

    Google Scholar 

  13. J. P. Burg, in Proc. of the 37th Ann. Intern. Meeting of the Soc. of Exploration Geophysicists, Oklahoma City, OK, 1967, p. 34.

  14. B. R. Freiden, J. Opt. Soc. Am. 62, 511 (1972).

    Article  ADS  Google Scholar 

  15. A. N. Tikhonov and V. Ya. Arsenin, Decision Methods of Incorrect Problems (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  16. C. T. Mottershead, in Maximum Entropy Bayesian Methods (1996), pp. 425–436.

  17. G. Demoment and A. Mohammad-Djafari, Appl. Opt. 26, 1745 (1987).

    Article  ADS  Google Scholar 

  18. A. Mohammad-Djafari and M. K. Nguyen, IEEE Trans. Med. Imaging 13, 254 (1994).

    Article  Google Scholar 

  19. R. Nityananda and R. Narayan, Ann. Rev. Astron. Astrophys. 24, 127 (1986).

    Article  ADS  Google Scholar 

  20. S. J. Wernecke and L. R. D’Addario, IEEE Trans. Computers 26, 351 (1977).

    Article  MATH  ADS  Google Scholar 

  21. P. J. Hore, in Maximum Entropy in Action (Clarendon, Oxford, 1991), pp. 41–72.

    Google Scholar 

  22. D. J. Battle, PhD Thesis (Univ. of Sydney, 1999).

  23. A. E. Bazulin and E. G. Bazulin, Akust. Zh. 51, 1 (2005).

    Google Scholar 

  24. P. F. Smith and M. A. Player, J. Phys. D Appl. Phys. 24, 1714 (1991).

    Article  ADS  Google Scholar 

  25. Ultrasonic Transducer for Nondestructive Control, Ed. by I. N. Ermolov (Mashinostroenie, Moscow, 1986) [in Russian].

    Google Scholar 

  26. V. G. Badalyan and E. G. Bazulin, Defektoskopiya, No. 11, 76 (1987).

  27. G. I. Vasilenko and A. M. Taratorin, Image Recovery (Radio i Svyaz, Moscow, 1986) [in Russian].

    Google Scholar 

  28. A. E. Bazulin and E. G. Bazulin, Defektoskopiya, No. 9, 3 (2006).

  29. R. K. Bryan and J. Skilling, Mon. Not. R. Astron. Soc. 211, 111 (1984).

    MATH  ADS  Google Scholar 

  30. T. F. Coleman, SIAM J. Optimization 6, 418 (1996).

    Article  MATH  Google Scholar 

  31. V. A. Morozov, Vychislit. Matem. Programmirov. 4, 130 (2003).

    Google Scholar 

  32. G. M. P. van Kempen and L. J. Van Vliet, J. Microscopy 198, 63 (2000).

    Article  Google Scholar 

  33. E. L. Kosarev, Radiotekh. Elektron. 35(1), 68 (1990).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Bazulin.

Additional information

Original Russian Text © A.E. Bazulin, E.G. Bazulin, 2009, published in Akusticheskiĭ Zhurnal, 2009, Vol. 55, No. 6, pp. 772–783.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazulin, A.E., Bazulin, E.G. Deconvolution of complex echo signals by the maximum entropy method in ultrasonic nondestructive inspection. Acoust. Phys. 55, 832–842 (2009). https://doi.org/10.1134/S1063771009060189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771009060189

PACS numbers

Navigation