Skip to main content
Log in

Computer models in room acoustics: The ray tracing method and the auralization algorithms

  • Room Acoustics. Musical Acoustics
  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

Computer algorithms are described for constructing virtual acoustic models of various rooms that should satisfy some specific sound quality criteria. The algorithms are based on the ray tracing method, which, in the general case, allows calculation of the amplitude of an acoustic ray that survived multiple reflections from arbitrary curved surfaces. As a result, calculations of room acoustics are reduced to tracing the trajectories of all the acoustic rays in the course of their propagation with multiple reflections from reflecting surfaces to the point of their complete decay. For this approach to be used, the following physical properties of a room should be known: the geometry of the reflecting surfaces, the absorption and diffusion coefficients on each of these surfaces, and the decay law for rays propagating in air. The proposed models allow for the solution of the important problem of architectural acoustics called the auralization problem, i.e., to predict how any given audio segment will sound in any given hall on the basis of computer simulation alone, without any full-scale testing in specific halls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Marchuk and V. I. Agoshkov, Introduction to Projection-Grid Methods (Nauka, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  2. P. Banerjee and R. Butterfild, Boundary Element. Methods in Engineering Science (McGraw-Hill, London, 1981; Mir, Moscow, 1984).

    MATH  Google Scholar 

  3. T. N. Galishnikova and A. S. Il’inski, Numerical Methods in Diffraction Problems (Mosk. Gos. Univ., Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  4. I. D. Druzhinina and M. A. Sumbatyan, Akust. Zh. 36, 269 (1990) [Sov. Phys. Acoust. 36, 146 (1990)].

    Google Scholar 

  5. I. Bork, Acta Acustica 91, 753 (2005).

    Google Scholar 

  6. L. I. Makrinenko, Acoustics of Auditoriums in Public Buildings (Stroizdat, Moscow, 1986; Acoustic Soc. Amer., 1994).

    Google Scholar 

  7. H. Kutruff, Room Acoustics (Applied Science, London, 1973).

    Google Scholar 

  8. L. Cremer and Müller, Principles and Applications of Room Acoustics, in 2 vols. (Applied Science, London, 1982).

    Google Scholar 

  9. S. R. Bistafa and J. S. Bradley, J. Acoust. Soc. Am. 108, 1721 (2000).

    Article  ADS  Google Scholar 

  10. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Problems of the Diffraction of Short Waves (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  11. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  12. D. A. M. McNamara, C. W. I. Pistorius, and J. A. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction (Artech House, Norwood, 1990).

    Google Scholar 

  13. I. D. Druzhinina and M. A. Sumbatyan, Akust. Zh. 38, 470 (1992) [Sov. Phys. Acoust. 38, 257 (1992)].

    Google Scholar 

  14. M. A. Sumbatyan and N. V. Boev, J. Acoust. Soc. Am. 95, 2346 (1994).

    Article  ADS  Google Scholar 

  15. M. V. Fedoryuk, Pereval Method (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  16. N. V. Boev and M. A. Sumbatyan, Dokl. Akad. Nauk 392, 614 (2003) [Phys. Dokl. 48, 540 (2003)].

    MathSciNet  Google Scholar 

  17. J. H. Rindel, J. Vibroeng., p. 219 (2000).

  18. B.-I. Dalenback, J. Acoust. Soc. Am. 100, 899 (1996).

    Article  ADS  Google Scholar 

  19. V. M. Rudnik et al., Sound Absorbing Materials and Constructions, Handbook (Svyaz’, Moscow, 1970) [in Russian].

    Google Scholar 

  20. Acoustics Measurement of Reverberation Time of Rooms with Reference to Other Acoustical Parameters,” Intern. Standars ISO 3382.

  21. F. Preparata and M. Shamos, Computational Geometry: An Introduction (Mir, Moscow, 1989; Springer, New York, 1985).

    MATH  Google Scholar 

  22. A. N. Tikhonov and V. Ya. Arsenin, Decision Methods of Incorrect Problems (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  23. H. Kuttruff, Acustica 77, 176 (1992).

    Google Scholar 

  24. Y. Yamada and T. Hidaka, J. Acoust. Soc. Am. 118, 818 (2005).

    Article  ADS  Google Scholar 

  25. M. Vercammen, in Proc. of the Intern. Symp. on Room Acoust. ISRA, 2007, Sevilla, CD-disk, p. S06.

  26. K. H. Kuttruff, J. Audio Eng. Soc. 41, 876 (1993).

    Google Scholar 

  27. V. Anert, S. Fastel’, and O. Shmitts, in Proc. of the 13th Session RAO (GEOS, Moscow, 2003), Vol. 5, pp. 21–34 [in Russian].

    Google Scholar 

  28. W. Yang and M. Hodgson, J. Acoust. Soc. Am. 120, 801 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Pompei.

Additional information

Original Russian Text © A. Pompei, M.A. Sumbatyan, N.F. Todorov, 2009, published in Akusticheskiĭ Zhurnal, 2009, Vol. 55, No. 6, pp. 760–771.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pompei, A., Sumbatyan, M.A. & Todorov, N.F. Computer models in room acoustics: The ray tracing method and the auralization algorithms. Acoust. Phys. 55, 821–831 (2009). https://doi.org/10.1134/S1063771009060177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771009060177

PACS numbers

Navigation