Skip to main content
Log in

A comparative study of systems used for dynamic focusing of ultrasound

  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

A comparative study of two methods used for dynamic focusing of ultrasound: the conventional phased arrays and a new method based on time reversal of acoustic signals is carried out. A laboratory model of the focusing system based on time reversal is developed and manufactured. One of the principal elements of the system is a reverberator with several piezoelectric transducers attached to its walls. Experiments are carried out to demonstrate the ability of such a system to generate one focus or several foci and to steer them electronically at considerable distances (50 mm at minimum) off the axis of the focusing system without causing the appearance of any grating lobes or other secondary intensity maxima. The focusing properties of the system are compared with the results of numerical simulation of two-dimensional phased arrays, whose parameters are taken to be typical for the arrays used in extracorporeal surgery. The important role of randomization is demonstrated for both of the aforementioned focusing methods. The prospects of practical application of the two methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. T. O’Neil, J. Acoust. Soc. Am. 21, 516 (1949).

    Article  ADS  Google Scholar 

  2. G. Kossoff, Ultrasound Med. Biol. 5, 359 (1979).

    Article  Google Scholar 

  3. R. J. Lalonde, A. Worthington, and J. W. Hunt, IEEE Trans. Ultras. Ferroelec. Freq. Control 40, 592 (1993).

    Article  Google Scholar 

  4. E. S. Ebbini and C. A. Cain, IEEE Trans. Biomed. Eng. 38, 634 (1991).

    Article  Google Scholar 

  5. D. R. Daum and K. Hynynen, IEEE Trans. Ultras. Ferroelec. Freq. Control 46, 1254 (1999).

    Article  Google Scholar 

  6. R. J. McGough, M. L. Kessler, and E. S. Ebbini, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 43, 1074 (1996).

    Article  Google Scholar 

  7. E. S. Ebbini and C. A. Cain, IEEE Trans. Ultrason. Ferroelec. Freq. Control 36, 540 (1989).

    Article  Google Scholar 

  8. W. L. Nyborg, Physical Mechanisms for Biological Effects of Ultrasound, DHEW 78-8062 (US Government Printing Office, Washington, DC, 1977).

    Google Scholar 

  9. M. I. Skolnik, Introduction to Radar Systems, 2nd ed. (McGraw-Hill, New York, 1980).

    Google Scholar 

  10. L. R. Gavrilov and J. W. Hand, IEEE Trans. Ultrason. Ferroelec. Freq. Control 41, 125 (2000).

    Article  Google Scholar 

  11. J. W. Hand and L. R. Gavrilov, Great Britain Patent No. GB2347043.

  12. J. W. Hand and L. R. Gavrilov, US Patent No. 6488630.

  13. D. H. Turnbull and F. S. Foster, IEEE Trans on Ultras. Ferroel. Freq. Control 38, 320 (1991).

    Article  Google Scholar 

  14. S. A. Goss, L. A. Frizzell, J. T. Kouzmanoff, et al., IEEE Trans. Ultras. Ferroelec. Freq. Control 43, 1111 (1996).

    Article  Google Scholar 

  15. L. R. Gavrilov and J. Hand, Akust. Zh. 46, 456 (2000) [Acoust. Phys. 46, 390 (2000)].

    Google Scholar 

  16. L. R. Gavrilov, Akust. Zh. 49, 604 (2003) [Acoust. Phys. 49, 508 (2003)].

    Google Scholar 

  17. L. R. Gavrilov, Akust. Zh. 54, 315 (2008) [Acoust. Phys. 54, 270 (2008)].

    MathSciNet  Google Scholar 

  18. M. Fink, G. Montaldo, and M. Tanter, Ann. Rev. Biomed. Eng. 5, 465 (2003).

    Article  Google Scholar 

  19. M. Fink, Sci. Amer., p. 91 (Nov., 1999).

  20. C. Draeger and M. Fink, J. Acoust. Soc. Am. 105, 611 (1999).

    Article  ADS  Google Scholar 

  21. C. Draeger, J.-C. Aime, and M. Fink, J. Acoust. Soc. Am. 105, 618 (1999).

    Article  ADS  Google Scholar 

  22. N. Quieffin, S. Catheline, R. K. Ing, and M. Fink, J. Acoust. Soc. Am. 115, 1955 (2004).

    Article  ADS  Google Scholar 

  23. A. Sutin and A. Sarvazyan, in Proc. World Congress on Ultrasonics, Paris, France, 2003, p. 1019.

  24. B. K. Choi, A. Sutin, and A. Sarvazyan, Proc. of the 2006 IEEE International Ultrasonics Symposium, Vancouver, Canada, 2006, p. 2177.

  25. L. Fillinger, A. Sutin, and A. Sarvazyan, J. Acoust. Soc. Am. 123, 3338 (2008).

    Article  ADS  Google Scholar 

  26. A. Sarvazyan, J. Acoust. Soc. Am. 123, 3429 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Sarvazyan.

Additional information

Original Russian Text © A.P. Sarvazyan, L. Fillinger, L.R. Gavrilov, 2009, published in Akusticheskiĭ Zhurnal, 2009, Vol. 55, No. 4–5, pp. 623–630.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarvazyan, A.P., Fillinger, L. & Gavrilov, L.R. A comparative study of systems used for dynamic focusing of ultrasound. Acoust. Phys. 55, 630–637 (2009). https://doi.org/10.1134/S1063771009040198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771009040198

PACS numbers

Navigation