Acoustical Physics

, Volume 53, Issue 3, pp 298–304 | Cite as

Tangent plane approximation and some of its generalizations

  • A. G. Voronovich
Article
  • 52 Downloads

Abstract

A review of the tangent plane approximation proposed by L.M. Brekhovskikh is presented. The advantage of the tangent plane approximation over methods based on the analysis of integral equations for surface sources is emphasized. A general formula is given for the scattering amplitude of scalar plane waves under an arbitrary boundary condition. The direct generalization of the tangent plane approximation is shown to yield approximations that include a correct description of the Bragg scattering and allow one to avoid the use of a two-scale model.

PACS numbers

43.30.Hw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Brekhovskikh, Dokl. Akad. Nauk SSSR 79, 585 (1951).Google Scholar
  2. 2.
    B. F. Kur’yanov, Akust. Zh. 8, 325 (1962) [Sov. Phys. Acoust. 8, 252 (1962)].Google Scholar
  3. 3.
    I. M. Fuks, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 9, 876 (1966).Google Scholar
  4. 4.
    G. R. Valenzuela, Radio Sci. 3, 1057 (1968).ADSGoogle Scholar
  5. 5.
    A. G. Voronovich, Waves Random Media 6, 151 (2002).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    A. G. Voronovich, in Proceedings of the 4th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Golden, CO, 1998, pp. 84–88.Google Scholar
  7. 7.
    A. G. Voronovich, in Light Scattering and Nanoscale Roughness, Ed. by A. A. Maradudin (Springer, New York, 2006), pp. 35–60.Google Scholar
  8. 8.
    A. G. Voronovich, in Light Scattering and Nanoscale Roughness, Ed. by A. A. Maradudin (Springer, New York, 2006), pp. 93–106.Google Scholar
  9. 9.
    A. G. Voronovich, Wave Scattering from Rough Surfaces, 2nd ed. (Springer, Berlin, 1999), p. 236.MATHGoogle Scholar
  10. 10.
    Yu. P. Lysanov, Akust. Zh. 2, 182 (1956) [Sov. Phys. Acoust. 2, 190 (1956)].MathSciNetGoogle Scholar
  11. 11.
    W. C. Meecham, J. Acoust. Soc. Am. 28, 370 (1956).CrossRefMathSciNetGoogle Scholar
  12. 12.
    A. G. Voronovich, Zh. Éksp. Teor. Fiz. 89, 116 (1985) [Sov. Phys. JETP 62, 65 (1985)].ADSGoogle Scholar
  13. 13.
    A. G. Voronovich, Waves Random Media 12, 341 (2002).MATHCrossRefADSGoogle Scholar
  14. 14.
    T. Elfouhaily, S. Guignard, and D. Thompson, Waves Random Media 13, 321 (2003).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    T. Elfouhaily and C.-A. Guerin, Waves Random Media 14, R1 (2004).MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. G. Voronovich
    • 1
  1. 1.NOAA/Earth System Research LaboratoryBoulderUSA

Personalised recommendations