Abstract
A theoretical model is proposed that is capable of describing the current–voltage characteristic for a bipolar filament-type memristor during reversible switching. The model makes it possible to describe various types of current–voltage curves observed in experiments. It is established that the initially formed filament, after a series of switchings, acquires a stationary shape that repeatedly reproduces the current–voltage characteristic during further switchings.
REFERENCES
Soni., K. and Sahoo, S., A review on different memristor modeling and applications, 2022 Int. Mobile and Embedded Technology Conf. (MECON), Noida, India, 2022, IEEE, 2022, pp. 688–695. https://doi.org/10.1109/mecon53876.2022.9752214
Xiao, Yo., Jiang, B., Zhang, Z., Ke, Sh., Jin, Ya., Wen, X., and Ye, C., A review of memristor: Material and structure design, device performance, applications and prospects, Sci. Technol. Adv. Mater., 2023, vol. 24, no. 1, p. 2162323. https://doi.org/10.1080/14686996.2022.2162323
Patil, A.R., Dongale, T.D., Kamat, R.K., and Rajpure, K.Y., Binary metal oxide-based resistive switching memory devices: A status review, Mater. Today Commun., 2023, vol. 34, p. 105356. https://doi.org/10.1016/j.mtcomm.2023.105356
Fadeev, A.V. and Rudenko, K.V., To the issue of the memristor’s HRS and LRS states degradation and data retention time, Russ. Microelectron., 2022, vol. 50, no. 5, pp. 311–325. https://doi.org/10.1134/s1063739721050024
Wu, L., Liu, H., Li, J., Wang, Sh., and Wang, X., A multi-level memristor based on al-doped HfO2 thin film, Nanoscale Res. Lett., 2019, vol. 14, no. 1, p. 177. https://doi.org/10.1186/s11671-019-3015-x
Larentis, S., Nardi, F., Balatti, S., Gilmer, D.C., and Ielmini, D., Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: Modeling, IEEE Trans. Electron Devices, 2012, vol. 59, no. 9, pp. 2468–2475. https://doi.org/10.1109/ted.2012.2202320
Tang, Z., Fang, L., Xu, N., and Liu, R., Forming compliance dominated memristive switching through interfacial reaction in Ti/TiO2/Au structure, J. Appl. Phys, 2015, vol. 118, no. 18, p. 185309. https://doi.org/10.1063/1.4935622
Villena, M.A., González, M.B., Roldán, J.B., Campabadal, F., Jiménez-Molinos, F., Gómez-Campos, F.M., and Suñé, J., An in-depth study of thermal effects in reset transitions in HfO2 based RRAMs, Solid-State Electron., 2015, vol. 111, pp. 47–51. https://doi.org/10.1016/j.sse.2015.04.008
Rziga, F.O., Mbarek, Kh., Ghedira, S., and Besbes, K., An efficient Verilog-A memristor model implementation: simulation and application, J. Comput. Electron., 2019, vol. 18, no. 3, pp. 1055–1064. https://doi.org/10.1007/s10825-019-01357-9
Ji, X., Dong, Z., Lai, C.S., Zhou, G., and Qi, D., A physics-oriented memristor model with the coexistence of NDR effect and RS memory behavior for bio-inspired computing, Mater. Today Adv., 2022, vol. 16, p. 100293. https://doi.org/10.1016/j.mtadv.2022.100293
Marchewka, A., Waser, R., and Menzel, S., Physical simulation of dynamic resistive switching in metal oxides using a Schottky contact barrier model, 2015 Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), Washington, D.C., 2015, IEEE, 2015, pp. 297–300. https://doi.org/10.1109/sispad.2015.7292318
Maruf, M.H. and Ali, S.I., Review and comparative study of I–V characteristics of different memristor models with sinusoidal input, Int. J. Electron., 2020, vol. 107, no. 3, pp. 349–375. https://doi.org/10.1080/00207217.2019.1661021
Guo, T., Pan, K., Jiao, Yi., Sun, B., Du, Ch., Mills, J.P., Chen, Z., Zhao, X., Wei, L., Zhou, Y.N., and Wu, Yi.A., Versatile memristor for memory and neuromorphic computing, Nanoscale Horiz., 2022, vol. 7, no. 3, pp. 299–310. https://doi.org/10.1039/d1nh00481f
Shen, W., Kumar, S., and Kumar, S., Experimentally calibrated electro-thermal modeling of temperature dynamics in memristors, Appl. Phys. Lett., 2021, vol. 118, no. 10, p. 103505. https://doi.org/10.1063/5.0039797
Fadeev, A.V. and Rudenko, K.V., Filament-based memristor switching model, Microelectron. Eng., 2024, vol. 289, p. 112179. https://doi.org/10.1016/j.mee.2024.112179
Sze, S.M. and Ng, K.K., Physics of Semiconductor Devices, Hoboken, N.J.: Wiley, 2007. https://doi.org/10.1002/0470068329
Marchewka, A., Waser, R., and Menzel, S., A 2D axisymmetric dynamic drift-diffusion model for numerical simulation of resistive switching phenomena in metal oxides, 2016 Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg. Germany, 2016, IEEE, 2016, pp. 145–148. https://doi.org/10.1109/sispad.2016.7605168
Manning, J.R. and Bruner, L.J., Diffusion kinetics for atoms in crystals, Am. J. Phys., 1968, vol. 36, no. 10, pp. 922–923. https://doi.org/10.1119/1.1974325
Permiakova, O.O., Rogozhin, A.E., Miakonkikh, A.V., Smirnova, E.A., and Rudenko, K.V., Transition between resistive switching modes in asymmetric HfO2-based structures, Microelectron. Eng., 2023, vol. 275, p. 111983. https://doi.org/10.1016/j.mee.2023.111983
Mahata, Ch., Kang, M., and Kim, S., Multi-level analog resistive switching characteristics in tri-layer HfO2/Al2O3/HfO2 based memristor on ITO electrode, Nanomaterials, 2020, vol. 10, no. 10, p. 2069. https://doi.org/10.3390/nano10102069
Tang, L., Maruyama, H., Han, T., Nino, J.C., Chen, Yo., and Zhang, D., Resistive switching in atomic layer deposited HfO2/ZrO2 nanolayer stacks, Appl. Surf. Sci., 2020, vol. 515, p. 146015. https://doi.org/10.1016/j.apsusc.2020.146015
Hao, Yu., Zhang, Yi., Wu, Z., Zhang, X., Shi, T., Wang, Yo., Zhu, J., Wang, R., Wang, Ya., and Liu, Q., Uniform, fast, and reliable CMOS compatible resistive switching memory, J. Semicond., 2022, vol. 43, no. 5, p. 054102. https://doi.org/10.1088/1674-4926/43/5/054102
Jiang, H., Han, L., Lin, P., Wang, Zh., Jang, M.H., Wu, Q., Barnell, M., Yang, J.J., Xin, H.L., and Xia, Q., Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor, Sci. Rep., 2016, vol. 6, no. 1, p. 28525. https://doi.org/10.1038/srep28525
Otsus, M., Merisalu, J., Tarre, A., Peikolainen, A.-L., Kozlova, J., Kukli, K., and Tamm, A., Bipolar resistive switching in hafnium oxide-based nanostructures with and without nickel nanoparticles, Electronics, 2022, vol. 11, no. 18, p. 2963. https://doi.org/10.3390/electronics11182963
Ismail, M., Mahata, Ch., Kang, M., and Kim, S., Robust resistive switching constancy and quantum conductance in high-k dielectric-based memristor for neuromorphic engineering, Nanoscale Res. Lett., 2022, vol. 17, no. 1, p. 61. https://doi.org/10.1186/s11671-022-03699-z
Funding
The study was carried out as part of state assignment FFNN-2022-0019 for Valiev Institute of Physics and Technology, Russian Academy of Sciences.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
The authors of this work declare that they have no conflicts of interest.
Additional information
Publisher’s Note.
Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Fadeev, A.V., Rudenko, K.V. Evolution of the Current–Voltage Characteristic of a Bipolar Memristor. Russ Microelectron 53, 297–302 (2024). https://doi.org/10.1134/S1063739724600432
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063739724600432