Skip to main content
Log in

Evolution of the Current–Voltage Characteristic of a Bipolar Memristor

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A theoretical model is proposed that is capable of describing the current–voltage characteristic for a bipolar filament-type memristor during reversible switching. The model makes it possible to describe various types of current–voltage curves observed in experiments. It is established that the initially formed filament, after a series of switchings, acquires a stationary shape that repeatedly reproduces the current–voltage characteristic during further switchings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Soni., K. and Sahoo, S., A review on different memristor modeling and applications, 2022 Int. Mobile and Embedded Technology Conf. (MECON), Noida, India, 2022, IEEE, 2022, pp. 688–695. https://doi.org/10.1109/mecon53876.2022.9752214

  2. Xiao, Yo., Jiang, B., Zhang, Z., Ke, Sh., Jin, Ya., Wen, X., and Ye, C., A review of memristor: Material and structure design, device performance, applications and prospects, Sci. Technol. Adv. Mater., 2023, vol. 24, no. 1, p. 2162323. https://doi.org/10.1080/14686996.2022.2162323

    Article  Google Scholar 

  3. Patil, A.R., Dongale, T.D., Kamat, R.K., and Rajpure, K.Y., Binary metal oxide-based resistive switching memory devices: A status review, Mater. Today Commun., 2023, vol. 34, p. 105356. https://doi.org/10.1016/j.mtcomm.2023.105356

    Article  Google Scholar 

  4. Fadeev, A.V. and Rudenko, K.V., To the issue of the memristor’s HRS and LRS states degradation and data retention time, Russ. Microelectron., 2022, vol. 50, no. 5, pp. 311–325. https://doi.org/10.1134/s1063739721050024

    Article  Google Scholar 

  5. Wu, L., Liu, H., Li, J., Wang, Sh., and Wang, X., A multi-level memristor based on al-doped HfO2 thin film, Nanoscale Res. Lett., 2019, vol. 14, no. 1, p. 177. https://doi.org/10.1186/s11671-019-3015-x

    Article  Google Scholar 

  6. Larentis, S., Nardi, F., Balatti, S., Gilmer, D.C., and Ielmini, D., Resistive switching by voltage-driven ion migration in bipolar RRAM—Part II: Modeling, IEEE Trans. Electron Devices, 2012, vol. 59, no. 9, pp. 2468–2475. https://doi.org/10.1109/ted.2012.2202320

    Article  Google Scholar 

  7. Tang, Z., Fang, L., Xu, N., and Liu, R., Forming compliance dominated memristive switching through interfacial reaction in Ti/TiO2/Au structure, J. Appl. Phys, 2015, vol. 118, no. 18, p. 185309. https://doi.org/10.1063/1.4935622

    Article  Google Scholar 

  8. Villena, M.A., González, M.B., Roldán, J.B., Campabadal, F., Jiménez-Molinos, F., Gómez-Campos, F.M., and Suñé, J., An in-depth study of thermal effects in reset transitions in HfO2 based RRAMs, Solid-State Electron., 2015, vol. 111, pp. 47–51. https://doi.org/10.1016/j.sse.2015.04.008

    Article  Google Scholar 

  9. Rziga, F.O., Mbarek, Kh., Ghedira, S., and Besbes, K., An efficient Verilog-A memristor model implementation: simulation and application, J. Comput. Electron., 2019, vol. 18, no. 3, pp. 1055–1064. https://doi.org/10.1007/s10825-019-01357-9

    Article  Google Scholar 

  10. Ji, X., Dong, Z., Lai, C.S., Zhou, G., and Qi, D., A physics-oriented memristor model with the coexistence of NDR effect and RS memory behavior for bio-inspired computing, Mater. Today Adv., 2022, vol. 16, p. 100293. https://doi.org/10.1016/j.mtadv.2022.100293

    Article  Google Scholar 

  11. Marchewka, A., Waser, R., and Menzel, S., Physical simulation of dynamic resistive switching in metal oxides using a Schottky contact barrier model, 2015 Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), Washington, D.C., 2015, IEEE, 2015, pp. 297–300. https://doi.org/10.1109/sispad.2015.7292318

  12. Maruf, M.H. and Ali, S.I., Review and comparative study of I–V characteristics of different memristor models with sinusoidal input, Int. J. Electron., 2020, vol. 107, no. 3, pp. 349–375. https://doi.org/10.1080/00207217.2019.1661021

    Article  Google Scholar 

  13. Guo, T., Pan, K., Jiao, Yi., Sun, B., Du, Ch., Mills, J.P., Chen, Z., Zhao, X., Wei, L., Zhou, Y.N., and Wu, Yi.A., Versatile memristor for memory and neuromorphic computing, Nanoscale Horiz., 2022, vol. 7, no. 3, pp. 299–310. https://doi.org/10.1039/d1nh00481f

    Article  Google Scholar 

  14. Shen, W., Kumar, S., and Kumar, S., Experimentally calibrated electro-thermal modeling of temperature dynamics in memristors, Appl. Phys. Lett., 2021, vol. 118, no. 10, p. 103505. https://doi.org/10.1063/5.0039797

    Article  Google Scholar 

  15. Fadeev, A.V. and Rudenko, K.V., Filament-based memristor switching model, Microelectron. Eng., 2024, vol. 289, p. 112179. https://doi.org/10.1016/j.mee.2024.112179

    Article  Google Scholar 

  16. Sze, S.M. and Ng, K.K., Physics of Semiconductor Devices, Hoboken, N.J.: Wiley, 2007. https://doi.org/10.1002/0470068329

  17. Marchewka, A., Waser, R., and Menzel, S., A 2D axisymmetric dynamic drift-diffusion model for numerical simulation of resistive switching phenomena in metal oxides, 2016 Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg. Germany, 2016, IEEE, 2016, pp. 145–148. https://doi.org/10.1109/sispad.2016.7605168

  18. Manning, J.R. and Bruner, L.J., Diffusion kinetics for atoms in crystals, Am. J. Phys., 1968, vol. 36, no. 10, pp. 922–923. https://doi.org/10.1119/1.1974325

    Article  Google Scholar 

  19. Permiakova, O.O., Rogozhin, A.E., Miakonkikh, A.V., Smirnova, E.A., and Rudenko, K.V., Transition between resistive switching modes in asymmetric HfO2-based structures, Microelectron. Eng., 2023, vol. 275, p. 111983. https://doi.org/10.1016/j.mee.2023.111983

    Article  Google Scholar 

  20. Mahata, Ch., Kang, M., and Kim, S., Multi-level analog resistive switching characteristics in tri-layer HfO2/Al2O3/HfO2 based memristor on ITO electrode, Nanomaterials, 2020, vol. 10, no. 10, p. 2069. https://doi.org/10.3390/nano10102069

    Article  Google Scholar 

  21. Tang, L., Maruyama, H., Han, T., Nino, J.C., Chen, Yo., and Zhang, D., Resistive switching in atomic layer deposited HfO2/ZrO2 nanolayer stacks, Appl. Surf. Sci., 2020, vol. 515, p. 146015. https://doi.org/10.1016/j.apsusc.2020.146015

    Article  Google Scholar 

  22. Hao, Yu., Zhang, Yi., Wu, Z., Zhang, X., Shi, T., Wang, Yo., Zhu, J., Wang, R., Wang, Ya., and Liu, Q., Uniform, fast, and reliable CMOS compatible resistive switching memory, J. Semicond., 2022, vol. 43, no. 5, p. 054102. https://doi.org/10.1088/1674-4926/43/5/054102

    Article  Google Scholar 

  23. Jiang, H., Han, L., Lin, P., Wang, Zh., Jang, M.H., Wu, Q., Barnell, M., Yang, J.J., Xin, H.L., and Xia, Q., Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor, Sci. Rep., 2016, vol. 6, no. 1, p. 28525. https://doi.org/10.1038/srep28525

    Article  Google Scholar 

  24. Otsus, M., Merisalu, J., Tarre, A., Peikolainen, A.-L., Kozlova, J., Kukli, K., and Tamm, A., Bipolar resistive switching in hafnium oxide-based nanostructures with and without nickel nanoparticles, Electronics, 2022, vol. 11, no. 18, p. 2963. https://doi.org/10.3390/electronics11182963

    Article  Google Scholar 

  25. Ismail, M., Mahata, Ch., Kang, M., and Kim, S., Robust resistive switching constancy and quantum conductance in high-k dielectric-based memristor for neuromorphic engineering, Nanoscale Res. Lett., 2022, vol. 17, no. 1, p. 61. https://doi.org/10.1186/s11671-022-03699-z

    Article  Google Scholar 

Download references

Funding

The study was carried out as part of state assignment FFNN-2022-0019 for Valiev Institute of Physics and Technology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Fadeev or K. V. Rudenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeev, A.V., Rudenko, K.V. Evolution of the Current–Voltage Characteristic of a Bipolar Memristor. Russ Microelectron 53, 297–302 (2024). https://doi.org/10.1134/S1063739724600432

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739724600432

Keywords:

Navigation