Skip to main content
Log in

Prototypes of Devices for Heterogeneous Hybrid Semiconductor Electronics with an Embedded Biomolecular Domain

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A macromolecular system embedded in a semiconductor microelectronic device is considered as a biomolecular nano- or micro-sized domain that performs the functions of converting acoustic and electromagnetic signals. The issues of the choice of substances, the dynamic and structural-functional state of the domain, and the physical foundations of its interaction with matrix elements are discussed. The process of excitation of forced oscillations in amino acid molecules (for example, glycine, tryptophan, and diphenyl-L-alanine) under the influence of short (10–100 ps) packets of electrical signals in the IR range with a frequency in the range of 1–125 THz is studied by the method of supercomputer nonequilibrium modeling of molecular dynamics. The acoustoelectric interpretation of oscillation generation is carried out using a unified equivalent circuit of the peptide group. Examples of prototypes of heterogeneous devices being developed are given. It is concluded that embedded biomolecular domains, presented as a multifunctional element base, are promising for signal conversion in hybrid microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Roco, M.C., The long view of nanotechnology development: The National Nanotechnology Initiative at 10  years, J. Nanoparticle Res., 2011, vol. 13, no. 2, pp. 427–445. https://doi.org/10.1007/s11051-010-0192-z

    Article  ADS  Google Scholar 

  2. IEEE International Roadmap for Devices and Systems–IEEE IRDS, 2020. https://irds.ieee.org/. Cited April 4, 2023.

  3. Apter, B., Lapshina, N., Handelman, A., Fainberg, B.D., and Rosenman, G., Peptide nanophotonics: From optical waveguiding to precise medicine and multifunctional biochips, Small, 2018, vol. 14, no. 34. https://doi.org/10.1002/smll.201801147

  4. Heni, W., Kutuvantavida, Ya., Haffner, C., Zwickel, H., Kieninger, C., Wolf, S., Lauermann, M., Fedoryshyn, Yu., Tillack, A., Johnson, L., Elder, D., Robinson, B., Freude, W., Koos, C., Leuthold, J., and Dalton, L., Silicon–organic and plasmonic–organic hybrid photonics, ACS Photonics, 2017, vol. 4, no. 7, pp. 1576–1590. https://doi.org/10.1021/acsphotonics.7b00224

    Article  CAS  Google Scholar 

  5. Pugachev, A.D., Ozhogin, I.V., El-Sewify, I.M., Kozlenko, A.S., Makarova, N.I., Metelitsa, A.V., Tkachev, V.V., and Lukyanov, B.S., New negative photochromic spiropyran for molecular electronics and photovoltaics, Probl. Razrab. Perspektivnykh Mikro- Nanoelektronnykh Sistem, 2021, no. 4, pp. 155–161. https://doi.org/10.31114/2078-7707-2021-4-155-161

  6. Pugachev, A.D., Ozhogin, I.V., Lukyanova, M.B., Lukyanov, B.S., Kozlenko, A.S., Rostovtseva, I.A., Makarova, N.I., Metelitsa, A.V., and Tkachev, V.V., New spiropyrans for creating elements of molecular electronics and photonics, Probl. Razrab. Perspektivnykh Mikro- i Nanoelektronnykh Sistem, 2020, no. 3, pp. 139–146. https://doi.org/10.31114/2078-7707-2020-3-139-146

  7. Huang, X. and Li, T., Recent progress in the development of molecular-scale electronics based on photoswitchable molecules, J. Mater. Chem. C, 2020, vol. 8, no. 3, pp. 821–848. https://doi.org/10.1039/c9tc06054e

    Article  CAS  Google Scholar 

  8. Liu, G., Grand challenges in biosensors and biomolecular electronics, Front. Bioeng. Biotechnol., 2021, vol. 9, p. 707615. https://doi.org/10.3389/fbioe.2021.707615

    Article  PubMed  PubMed Central  Google Scholar 

  9. Velichko, E.N. and Tsybin, O.Yu., Gibridnaya biomolekulyarnaya elektronika. Monografiya (Hybrid Biomolecular Electronics), St. Petersburg: Politekh-Press, 2021.

  10. Dunn, K., Trefzer, M., Johnson, S., and Tyrrell, A., Towards a bioelectronic computer: A theoretical study of a multi-layer biomolecular computing system that can process electronic inputs, Int. J. Mol. Sci., 2018, vol. 19, no. 9, p. 2620. https://doi.org/10.3390/ijms19092620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ing, N.L., El-Naggar, M.Y., and Hochbaum, A.I., Going the distance: Long-range conductivity in protein and peptide bioelectronic materials, J. Phys. Chem. B, 2018, vol. 122, no. 46, pp. 10403–10423. https://doi.org/10.1021/acs.jpcb.8b07431

    Article  CAS  PubMed  Google Scholar 

  12. Schiattarella, C., Diaferia, C., Gallo, E., Della Ventura, B., Morelli, G., Vitagliano, L., Velotta, R., and Accardo, A., Solid-state optical properties of self-assembling amyloid-like peptides with different charged states at the terminal ends, Sci. Rep., 2022, vol. 12, no. 1, p. 759. https://doi.org/10.1038/s41598-021-04394-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kovalchuk, M.V., Boikova, A.S., Dyakova, Yu.A., Ilina, K.B., Konarev, P.V., Marchenkova, M.A., Pisarevskiy, Yu.V., Prosekov, P.A., Rogachev, A.V., and Seregin, A.Yu., Structural characteristics of lysozyme Langmuir layers grown on a liquid surface from an oligomeric mixture formed during the early stages of lysozyme crystallization, Thin Solid Films, 2019, vol. 677, pp. 13–21. https://doi.org/10.1016/j.tsf.2019.02.051

    Article  ADS  CAS  Google Scholar 

  14. Boikova, A.S., D’yakova, Yu.A., Il’ina, K.B., Marchenkova, M.A., Seregin, A.Yu.P., Volkovsky, Yu.A., Pisarevsky, Yu.V., and Koval’chuk, M.V., Fabrication of multilayer films on the basis of lysozyme protein and precipitant (iodide and potassium) ions on a silicon substrate by the modified Langmuir–Schaefer method, Crystallogr. Rep., 2018, vol. 63, no. 5, pp. 719–723. https://doi.org/10.1134/S1063774518050061

    Article  ADS  CAS  Google Scholar 

  15. Kovalchuk, M.V., Boikova, A.S., Dyakova, Yu.A., Marchenkova, M.A., Opolchentsev, A.M., Pisarevsky, Yu.V., Prosekov, P.A., and Seregin, A.Yu., Modification of the Langmuir–Schaefer method for fabrication of ordered protein films, Crystallogr. Rep., 2017, vol. 62, no. 4, pp. 632–638. https://doi.org/10.1134/S1063774517040125

    Article  ADS  CAS  Google Scholar 

  16. Baranov, M., Tsybin, O., and Velichko, E., Structured biomolecular films for microelectronics, Nauchn.-Tekh. Vedomosti S.-Peterb. Gos. Politekh. Univ., 2021, vol. 14, no. 1, pp. 85–99. https://doi.org/10.18721/JPM.14106

    Article  Google Scholar 

  17. Velichko, E., Zezina, T., Baranov, M., Nepomnyashchaya, E., and Tsybin, O., Dynamics of polypeptide cluster dipole moment for nano communication applications, Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2018, Galinina, O., Andreev, S., Balandin, S., and Koucheryavy, Y., Eds., Lecture Notes in Computer Science, vol. 11118, Cham: Springer, 2018, pp. 675–682. https://doi.org/10.1007/978-3-030-01168-0_62

    Book  Google Scholar 

  18. Velichko, E., Zezina, T., Cheremiskina, A., and Tsybin, O., Nano communication device with embedded molecular films: Effect of electromagnetic field and dipole moment dynamics, Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NEW2AN 2015, Balandin, S., Andreev, S., and Koucheryavy, Y., Eds., Lecture Notes in Computer Science, vol. 9247, Cham: Springer, 2015, pp. 765–771. https://doi.org/10.1007/978-3-319-23126-6_71

    Book  Google Scholar 

  19. Tsybin, O., Nano-device with an Embedded Molecular Film: Mechanisms of Excitation, Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NEW2AN 2015, Balandin, S., Andreev, S., and Koucheryavy, Y., Eds., Lecture Notes in Computer Science, vol. 9247, Cham: Springer, 2015, pp. 772–777. https://doi.org/10.1007/978-3-319-23126-6_72

    Book  Google Scholar 

  20. Nepomnyashchaya, E.K., Baranov, M.A., and Tsybin, O.Yu., Computer resonance dynamics of glycine molecule in an electric field of infrared range, Pis’ma Zh. Tekh. Fiz., 2023, vol. 49, no. 7, pp. 8–11. https://doi.org/10.21883/PJTF.2023.07.54913.19435

    Article  Google Scholar 

  21. Fröhlich, H., The biological effects of microwaves and related questions, Advances in Electronics and Electron Physics, Marton, L. and Marton, C., Eds., Elsevier, 1980, vol. 53, pp. 85–152. https://doi.org/10.1016/s0065-2539(08)60259-0

    Book  Google Scholar 

  22. Millefiori, S., Alparone, A., Millefiori, A., and Vanella, A., Electronic and vibrational polarizabilities of the twenty naturally occurring amino acids, Biophys. Chem., 2008, vol. 132, nos. 2–3, pp. 139–147. https://doi.org/10.1016/j.bpc.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  23. Wang, W.N., Li, H.Q., Zhang, Y., and Zhang, C.L., Correlations between terahertz spectra and molecular structures of 20 standard α-amino acids, Acta Phys. Chim. Sin., 2009, vol. 25, no. 10, pp. 2074–2079. https://doi.org/10.3866/pku.whxb20090931

    Article  CAS  Google Scholar 

  24. Barth, A. and Zscherp, C., What vibrations tell about proteins, Q. Rev. Biophys., 2002, vol. 35, no. 4, pp. 369–430. https://doi.org/10.1017/s0033583502003815

    Article  CAS  PubMed  Google Scholar 

  25. Mohamed, M.E. and Mohammed, A.M.A., Experimental and computational vibration study of amino acids, Int. Lett. Chem., Phys. Astron., 2013, vol. 15, no. 1, pp. 1–17. https://doi.org/10.56431/p-177d2l

    Article  Google Scholar 

  26. Matei, A., Drichko, N., Gompf, B., and Dressel, M., Far-infrared spectra of amino acids, Chem. Phys., 2005, vol. 316, nos. 1–3, pp. 61–71. https://doi.org/10.1016/j.chemphys.2005.04.033

    Article  CAS  Google Scholar 

  27. Wolpert, M. and Hellwig, P., Infrared spectra and molar absorption coefficients of the 20 alpha amino acids in aqueous solutions in the spectral range from 1800 to 500cm−1, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2006, vol. 64, no. 4, pp. 987–1001. https://doi.org/10.1016/j.saa.2005.08.025

    Article  ADS  CAS  Google Scholar 

  28. Zhang, F., Tominaga, K., Hayashi, M., and Wang, H.-W., Low-frequency vibration study of amino acids using terahertz spectroscopy and solid-state density functional theory, SPIE Proc., 2014, vol. 9275, p. 92750D. https://doi.org/10.1117/12.2071528

  29. Yi, W., Yu, J., Xu, Yu., Wang, F., Yu, Q., Sun, H., Xu, L., Liu, Yu., and Jiang, L., Broadband terahertz spectroscopy of amino acids, Instrum. Sci. Technol., 2017, vol. 45, no. 4, pp. 423–439. https://doi.org/10.1080/10739149.2016.1270961

    Article  CAS  Google Scholar 

  30. Zezina, T.I. and Tsybin, O.Yu., Subpicosecond dynamics of the molecular polyalanine dipole moment, Nauchn.-Tekh. Vedomosti S.-Peterb. Gos. Politekh. Univ. Fiziko-Mat. Nauki, 2017, vol. 10, no. 4, pp. 100–110. https://doi.org/10.18721/JPM.10408

    Article  Google Scholar 

  31. Deniz, E., Valiño-Borau, L., Löffler, J., Eberl, K., Gulzar, A., Wolf, S., Durkin, P., Kaml, R., Budisa, N., Stock, G., and Bredenbeck, J., Through bonds or contacts? Mapping protein vibrational energy transfer using non-canonical amino acids, Nat. Commun., 2021, vol. 12, no. 1, p. 3284. https://doi.org/10.1038/s41467-021-23591-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mancini, T., Mosetti, R., Marcelli, A., Petrarca, M., Lupi, S., and D’arco, A., Terahertz spectroscopic analysis in protein dynamics: Current status, Radiation, 2022, vol. 2, no. 1, pp. 100–123. https://doi.org/10.3390/radiation2010008

    Article  Google Scholar 

  33. English, N.J. and Waldron, C.J., Perspectives on external electric fields in molecular simulation: Progress, prospects and challenges, Phys. Chem. Chem. Phys., 2015, vol. 17, no. 19, pp. 12407–12440. https://doi.org/10.1039/c5cp00629e

    Article  CAS  PubMed  Google Scholar 

  34. Kelly, C.M., Northey, T., Ryan, K., Brooks, B.R., Kholkin, A.L., Rodriguez, B.J., and Buchete, N.-V., Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field, Biophys. Chem., 2015, vol. 196, pp. 16–24. https://doi.org/10.1016/j.bpc.2014.08.009

    Article  CAS  PubMed  Google Scholar 

  35. Reale, R., English, N.J., Marracino, P., Liberti, M., and Apollonio, F., Dipolar response and hydrogen-bond kinetics in liquid water in square-wave time-varying electric fields, Mol. Phys., 2014, vol. 112, no. 14, pp. 1870–1878. https://doi.org/10.1080/00268976.2013.867081

    Article  ADS  CAS  Google Scholar 

  36. He, L., Dexter, A.F., and Middelberg, A.P.J., Biomolecular engineering at interfaces, Chem. Eng. Sci., 2006, vol. 61, no. 3, pp. 989–1003. https://doi.org/10.1016/j.ces.2005.05.064

    Article  CAS  Google Scholar 

  37. Lenci, S., Tedeschi, L., Pieri, F., and Domenici, C., UV lithography-based protein patterning on silicon: Towards the integration of bioactive surfaces and CMOS electronics, Appl. Surf. Sci., 2011, vol. 257, no. 20, pp. 8413–8419. https://doi.org/10.1016/j.apsusc.2011.04.096

    Article  ADS  CAS  Google Scholar 

  38. Kislov, V.V., Gulyaev, Yu.V., Kolesov, V.V., Taranov, I.V., Gubin, S.P., Khomutov, G.B., Soldatov, E.S., Maximov, I.A., and Samuelson, L., Electronics of molecular nanoclusters, Int. J. Nanosci., 2004, vol. 3, no. 01n02, pp. 137–147. https://doi.org/10.1142/s0219581x04001912

  39. Baranov, M.A., Tsybin, O.Yu., and Velichko, E.N., Structured biomolecular films for microelectronics, Nauchn.-Tekh. Vedomosti S.-Peterb. Gos. Politekh. Univ. Fiziko-Mat. Nauki, 2021, vol. 14, no. 1, pp. 85–99. https://doi.org/10.18721/JPM.14106

    Article  Google Scholar 

  40. Gatto, E., Toniolo, C., and Venanzi, M., Peptide self-assembled nanostructures: From models to therapeutic peptides, Nanomaterials, 2022, vol. 12, no. 3, p. 466. https://doi.org/10.3390/nano12030466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baranov, M., Velichko, E., and Tsybin, O., Self-assembled biomolecular films as a new material for nano-telecommunication devices, Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2020, Galinina, O., Andreev, S., Balandin, S., and Koucheryavy, Y., Eds., Lecture Notes in Computer Science, vol. 12526, Cham: Springer, 2020, pp. 384–393. https://doi.org/10.1007/978-3-030-65729-1_34

    Book  Google Scholar 

  42. Ravanfar, R., Bayles, C.J., and Abbaspourrad, A., Structural chemistry enables fluorescence of amino acids in the crystalline solid state, Cryst. Growth Des., 2020, vol. 20, no. 3, pp. 1673–1680. https://doi.org/10.1021/acs.cgd.9b01430

    Article  CAS  Google Scholar 

  43. The Physics of Semiconductor Microcavities, Deveaud, B., Ed., Weinheim, Germany: Wiley, 2007. https://doi.org/10.1002/9783527610150

    Book  Google Scholar 

  44. Toptygin, I.N., Electromagnetic Phenomena in Matter: Statistical and Quantum Approaches, Physics Textbook, Weinheim, Germany: Wiley, 2015.

  45. Velichko, E. and Tsybin, O., Biomolecular sensor with microelectronic generator of electromagnetic wave, RF Patent 2749698, 2021.

  46. Dyubo, D. and Tsybin, O.Y., Nano communication device with an embedded molecular film: Electromagnetic signals integration with dynamic operation photodetector, Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NsCC NEW2AN 2017, Galinina, O., Andreev, S., Balandin, S., and Koucheryavy, Y., Eds., Lecture Notes in Computer Science, vol. 10531, Cham: Springer, 2017, pp. 206–213. https://doi.org/10.1007/978-3-319-67380-6_19

    Book  Google Scholar 

  47. Karothu, D.P., Dushaq, G., Ahmed, E., Catalano, L., Polavaram, S., Ferreira, R., Li, L., Mohamed, S., Rasras, M., and Naumov, P., Mechanically robust amino acid crystals as fiber-optic transducers and wide bandpass filters for optical communication in the near-infrared, Nat. Commun., 2021, vol. 12, no. 1, p. 1326. https://doi.org/10.1038/s41467-021-21324-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dyubo, D. and Tsybin, O., Computer simulation of a surface charge nanobiosensor with internal signal integration, Biosensors, 2021, vol. 11, no. 10, p. 397. https://doi.org/10.3390/bios11100397

    Article  PubMed  PubMed Central  Google Scholar 

  49. Miao, L. and Seminario, J.M., Molecular dynamics simulations of signal transmission through a glycine peptide chain, J. Chem. Phys., 2007, vol. 127, no. 13, p. 134708. https://doi.org/10.1063/1.2786078

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Celestin, M., Krishnan, S., Bhansali, S., Stefanakos, E., and Goswami, D., A review of self-assembled monolayers as potential terahertz frequency tunnel diodes, Nano Res., 2014, vol. 7, no. 5, pp. 589–625. https://doi.org/10.1007/s12274-014-0429-8

    Article  CAS  Google Scholar 

  51. Dyubo, D., Tsybin, O.Y., Baranov, M.A., Alekseenko, A.P., and Velichko, E.N., Study of electric properties of self-assembled films of albumin during their dehydration, J. Phys.: Conf. Ser., 2018, vol. 1124, no. 3, p. 31013. https://doi.org/10.1088/1742-6596/1124/3/031013

    Article  CAS  Google Scholar 

  52. Baranov, M., Velichko, E., and Greshnevikov, K., Analysis of fractal structures in dehydrated films of protein solutions, Symmetry, 2021, vol. 13, no. 1, p. 123. https://doi.org/10.3390/sym13010123

    Article  ADS  Google Scholar 

  53. Nepomnyashchaya, E., Baranov, M., and Tsybin, O., Measurement of refraction coefficients in thin biomolecular films studies, 2022 Int. Conf. on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, 2022, IEEE, 2022, pp. 358–360. https://doi.org/10.1109/eexpolytech56308.2022.9950914

Download references

ACKNOWLEDGMENTS

This study was performed using the computing resources of the supercomputer center of Peter the Great St. Petersburg Polytechnic University (www.scc.spbstu.ru).

Funding

This study was carried out with financial support from the Russian Science Foundation as part of the program “Supercomputer modeling and technology of biomolecular film structures” (grant no. 21–72–20029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Baranov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, M.A., Karseeva, E.K. & Tsybin, O.Y. Prototypes of Devices for Heterogeneous Hybrid Semiconductor Electronics with an Embedded Biomolecular Domain. Russ Microelectron 52, 517–526 (2023). https://doi.org/10.1134/S1063739723700725

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723700725

Keywords:

Navigation