Skip to main content
Log in

Quantum Control Landscapes and Traps

  • QUANTUM INFORMATICS: COMPUTING
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Quantum control is a necessary tool for a variety of modern quantum technologies as it allows to optimally manipulate quantum systems for various tasks. Traps are points of local but not global optimum of the objective functional for a given quantum control problem. In a more general sense, traps are critical points of the objective functional which are hard to escape by local search algorithms. Here a review of some results of the analysis of possibility of having traps in landscapes of coherently controlled closed quantum systems is given. In one-qubit case, there are no traps. For special multilevel quantum systems, higher-order traps may appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Rice, S.A. and Zhao, M., Optical Control of Molecular Dynamics, Wiley, 2000.

    Google Scholar 

  2. Tannor, D.J., Introduction to Quantum Mechanics: A Time-Dependent Perspective, University Science Books, 2007.

    Google Scholar 

  3. Shapiro, M. and Brumer, P., Quantum Control of Molecular Processes, Wiley, 2011. https://doi.org/10.1002/9783527639700

    Book  Google Scholar 

  4. Koch, C.P., Boscain, U., Calarco, T., Dirr, G., Filipp, S., Glaser, S.J., Kosloff, R., Montangero, S., Schulte-Herbrüggen, T., Sugny, D., and Wilhelm, F.K., Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe, EPJ Quantum Technol., 2022, vol. 9, no. 1, p. 19. https://doi.org/10.1140/epjqt/s40507-022-00138-x

    Article  Google Scholar 

  5. Rabitz, H.A., Hsieh, M.M., and Rosenthal, C.M., Quantum optimally controlled transition landscapes, Science, 2004, vol. 303, no. 5666, pp. 1998–2001. https://doi.org/10.1126/science.1093649

    Article  Google Scholar 

  6. Pechen, A.N. and Tannor, D.J., Are there traps in quantum control landscapes?, Phys. Rev. Lett., 2011, vol. 106, no. 12, p. 120402. https://doi.org/10.1103/physrevlett.106.120402

    Article  Google Scholar 

  7. Pechen, A.N. and Tannor, D.J., Quantum control landscape for a Λ-atom in the vicinity of second-order traps, Isr. J. Chem., 2012, vol. 52, no. 5, pp. 467–472. https://doi.org/10.1002/ijch.201100165

    Article  Google Scholar 

  8. Huang, G.M., Tarn, T.J., and Clark, J.W., On the controllability of quantum-mechanical systems, J. Math. Phys., 1983, vol. 24, no. 11, pp. 2608–2618. https://doi.org/10.1063/1.525634

    Article  MathSciNet  Google Scholar 

  9. Turinici, G. and Rabitz, H., Quantum wavefunction controllability, Chem. Phys., 2001, vol. 267, nos. 1–3, pp. 1–9. https://doi.org/10.1016/s0301-0104(01)00216-6

    Article  Google Scholar 

  10. Schirmer, S.G., Fu, H., and Solomon, A.I., Complete controllability of quantum systems, Phys. Rev. A, 2001, vol. 63, no. 6, p. 063410. https://doi.org/10.1103/physreva.63.063410

    Article  Google Scholar 

  11. Altafini, C., Controllability properties for finite dimensional quantum Markovian master equations, J. Math. Phys., 2003, vol. 44, no. 6, pp. 2357–2372. https://doi.org/10.1063/1.1571221

    Article  MathSciNet  Google Scholar 

  12. Polack, T., Suchowski, H., and Tannor, D.J., Uncontrollable quantum systems: A classification scheme based on Lie subalgebras, Phys. Rev. A, 2009, vol. 79, no. 5, p. 053403. https://doi.org/10.1103/physreva.79.053403

    Article  Google Scholar 

  13. Boscain, U., Gauthier, J., Rossi, F., and Sigalotti, M., Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems, Commun. Math. Phys., 2015, vol. 333, no. 3, pp. 1225–1239. https://doi.org/10.1007/s00220-014-2195-6

    Article  MathSciNet  Google Scholar 

  14. Von Neumann, J., Some matrix-inequalities and metrization of matrix-space, Tomsk Univ. Rev., 1937, vol. 1, p. 1.

    Google Scholar 

  15. Brockett, R.W., Least squares matching problems, Linear Algebra its Appl., 1989, vols. 122–124, pp. 761–777. https://doi.org/10.1016/0024-3795(89)90675-7

  16. Bonnard, B. and Chyba, M., Singular Trajectories and Their Role in Control Theory, Mathématiques et Applications, vol. 40, Berlin: Springer, 2003.

  17. Wu, R.-B., Long, R., Dominy, J., Ho, T.-S., and Rabitz, H., Singularities of quantum control landscapes, Phys. Rev. A, 2012, vol. 86, no. 1, p. 013405. https://doi.org/10.1103/physreva.86.013405

    Article  Google Scholar 

  18. Volkov, B.O. and Pechen, A.N., Higher-order traps for some strongly degenerate quantum control systems, Russian Math. Surveys, 2023, vol. 78, no. 2, pp. 390–392. https://doi.org/10.4213/rm10069e

  19. Pechen, A. and Il’in, N., Trap-free manipulation in the Landau−Zener system, Phys. Rev. A, 2012, vol. 86, no. 5, p. 052117. https://doi.org/10.1103/physreva.86.052117

    Article  Google Scholar 

  20. Pechen, A.N. and Il’in, N.B., On extrema of the objective functional for short-time generation of single-qubit quantum gates, Izv.: Math., 2016, vol. 80, no. 6, pp. 1200–1212. https://doi.org/10.1070/im8567

    Article  MathSciNet  Google Scholar 

  21. Hegerfeldt, G.C., Driving at the quantum speed limit: Optimal control of a two-level system, Phys. Rev. Lett., 2017, vol. 111, no. 26, p. 260501. https://doi.org/10.1103/physrevlett.111.260501

    Article  Google Scholar 

  22. Larocca, M., Poggi, P.M., and Wisniacki, D.A., Quantum control landscape for a two-level system near the quantum speed limit, J. Phys. A: Math. Theor., 2018, vol. 51, no. 38, p. 385305. https://doi.org/10.1088/1751-8121/aad657

    Article  MathSciNet  Google Scholar 

  23. Volkov, B.O., Morzhin, O.V., and Pechen, A.N., Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates, J. Phys. A: Math. Theor., 2021, vol. 54, no. 21, p. 215303. https://doi.org/10.1088/1751-8121/abf45d

    Article  MathSciNet  Google Scholar 

  24. Volkov, B.O. and Pechen, A.N., On the detailed structure of quantum control landscape for fast single qubit phase-shift gate generation, Izv.: Math., 2023, vol. 87, no. 5, pp. 906–919. https://doi.org/10.4213/im9364e

    Article  MathSciNet  Google Scholar 

  25. Pechen, A.N. and Il’in, N.B., Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times, Proc. Steklov Inst. Math., 2015, vol. 289, no. 1, pp. 213–220. https://doi.org/10.1134/s0081543815040136

    Article  MathSciNet  Google Scholar 

  26. Pechen, A. and Il’in, N., Control landscape for ultrafast manipulation by a qubit, J. Phys. A: Math. Theor., 2017, vol. 50, no. 7, p. 075301. https://doi.org/10.1088/1751-8121/50/7/075301

    Article  MathSciNet  Google Scholar 

  27. Kuznetsov, S.A. and Pechen, A.N., On controllability of a highly degenerate four-level quantum system with a “chained” coupling Hamiltonian, Lobachevskii J. Math., 2022, vol. 43, no. 7, pp. 1683–1692. https://doi.org/10.1134/s1995080222100225

    Article  MathSciNet  Google Scholar 

  28. De Fouquieres, P. and Schirmer, S.G., A closer look at quantum control landscapes and their implication for control optimization, Infinite Dimens. Anal., Quantum Probab. Relat. Top., 2013, vol. 16, no. 3, p. 1350021. https://doi.org/10.1142/s0219025713500215

    Article  MathSciNet  Google Scholar 

  29. Zhdanov, D.V., Comment on ‘Control landscapes are almost always trap free: a geometric assessment’, J. Phys. A: Math. Theor., 2018, vol. 51, no. 50, p. 508001. https://doi.org/10.1088/1751-8121/aaecf6

    Article  MathSciNet  Google Scholar 

  30. Russell, B., Wu, R., and Rabitz, H., Reply to comment on ‘control landscapes are almost always trap free: A geometric assessment’, J. Phys. A: Math. Theor., 2018, vol. 51, no. 50, p. 508002. https://doi.org/10.1088/1751-8121/aaecf2

    Article  Google Scholar 

Download references

Funding

This work is supported by the Russian Science Foundation under grant no. 22-11-00330, https://rscf.ru/en/project/22-11-00330/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. O. Volkov or A. N. Pechen.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, B.O., Pechen, A.N. Quantum Control Landscapes and Traps. Russ Microelectron 52 (Suppl 1), S428–S431 (2023). https://doi.org/10.1134/S1063739723600796

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600796

Keywords:

Navigation