Skip to main content
Log in

Terahertz All-Dielectric Metalens: Design and Fabrication Features

  • DEVICES: THz
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A metalens operating at terahertz band is numerically designed. By adjusting the diameters of the pillar array from 25 to 80 μm, the metalens achieves 2π-phase modulation with over 70% transmission efficiency. Further analysis indicates that tiny displacement of the focal length occurs at different wavelengths due to the chromatic aberration, and the transmission efficiency shows strong dependency on the incident angle. The influence of the power of capacitive plasma on the structure height and surface morphology properties of the single-crystal silicon is experimentally studied. An increase in the power from 15 to 75 W is found to vary the obtained structure height from 62 to 193 nm, root mean square roughness increases from 15 to 75 nm, however peak-to-peak values decreases from 12.5 to 6.1 nm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Zou, X., Zheng, G., Yuan, Q., Zang, W., Chen, R., Li, T., Li, L., Wang, S., Wang, Z., and Zhu, S., Imaging based on metalenses, PhotoniX, 2020, vol. 1, no. 1, p. 2. https://doi.org/10.1186/s43074-020-00007-9

    Article  Google Scholar 

  2. Guo, Q., Shi, Z., Huang, Y.W., Alexander, E., Qiu, C.W., Capasso, F., and Zickler, T., Compact single-shot metalens depth sensors inspired by eyes of jumping spiders, Proc. Natl. Acad. Sci. U. S. A., 2019, vol. 116, no. 46, pp. 22959–22965. https://doi.org/10.1073/pnas.1912154116

    Article  Google Scholar 

  3. Meng, X., Liu, R., Chu, H., Peng, R., Wang, M., Hao, Y., and Lai, Y., Through-wall wireless communication enabled by a metalens, Phys. Rev. Appl., 2022, vol. 17, no. 6, p. 064027. https://doi.org/10.1103/PhysRevApplied.17.064027

    Article  Google Scholar 

  4. Zhong, Q., Li, Y., Hu, T., Dong, Y., Xu, Z., Li, D., Li, N., Fu, Y.H., Zhu, S., Bliznetsov, V., Lin, Q.Y., and Singh, N., 1550nm-Wavelength metalens demonstrated on 12-inch Si CMOS platform, 2019 IEEE 16th Int. Conf. on Group IV Photonics (GFP), Singapore, 2019, IEEE, 2019, pp. 1–2. https://doi.org/10.1109/GROUP4.2019.8925873

  5. Moon, S.-W., Kim, Ye., Yoon, G., and Rho, J., Recent progress on ultrathin metalenses for flat optics, iScience, 2020, vol. 23, no. 12, p. 101877. https://doi.org/10.1016/j.isci.2020.101877

  6. Fan, Zh.-B., Shao, Z.-K., Xie, M.-Yu., Pang, X.-N., Ruan, W.-Sh., Zhao, F.-L., Chen, Yu-J., Yu, S.-Yu., and Dong, J.-W., Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging, Phys. Rev. Appl., 2018, vol. 10, no. 1, p. 014005. https://doi.org/10.1103/physrevapplied.10.014005

    Article  Google Scholar 

  7. Hu, J., Bandyopadhyay, S., Liu, Yu-H., and Shao, L.-Ya., A review on metasurface: From principle to smart metadevices, Front. Phys., 2021, vol. 8, p. 586087. https://doi.org/10.3389/fphy.2020.586087

    Article  Google Scholar 

  8. Reed, G.T., Mashanovich, G., Gardes, F.Y., and Thomson, D.J., Silicon optical modulators, Nat. Photonics, 2010, vol. 4, no. 8, pp. 518–526. https://doi.org/10.1038/nphoton.2010.179

    Article  Google Scholar 

  9. Lin, R., Alnakhli, Z., Alqatari, F., and Li, X., Analysis of tapered nanopillars for reflective metalens: The role of higher-order modes, IEEE Photonics J., 2020, vol. 12, no. 4, p. 4600907. https://doi.org/10.1109/jphot.2020.3007489

    Article  Google Scholar 

  10. Colligon, J.S., Energetic condensation: Processes, properties, and products, J. Vac. Sci. Technol. A: Vac., Surf., Films, 1995, vol. 13, no. 3, pp. 1649–1657. https://doi.org/10.1116/1.579746

    Article  Google Scholar 

  11. Bhushan, B., Springer Handbook of Nanotechnology, New York: Springer, 2010. https://doi.org/10.1007/978-3-642-02525-9

    Book  Google Scholar 

  12. Gusev, E.Yu., Jityaeva, J.Y., Avdeev, S.P., and Ageev, O.A., Effect of substrate temperature on the properties of plasma deposited silicon oxide thin films, J. Phys.: Conf. Ser., 2018, vol. 1124, no. 1, p. 022034. https://doi.org/10.1088/1742-6596/1124/2/022034

    Article  Google Scholar 

  13. Avdeev, S.P., Avilov, V.I., Ageev, V.O., et al., Nanotekhnologii v mikroelektronike (Nanotechnology in Microelectronics), Ageev, O.A. and Konoplev, B.G., Eds., Moscow: Nauka, 2019.

    Google Scholar 

  14. Klimin, V.S., Morozova, Yu.V., Kots, I.N., Vakulov, Z.E., and Ageev, O.A., Formation of nanosized structures on the silicon surface by a combination of focused ion beam methods and plasma-chemical etching, Russ. Microelectron., 2022, vol. 51, no. 4, pp. 236–242. https://doi.org/10.1134/s1063739722030064

    Article  Google Scholar 

  15. Park, H. and Kim, H.J., Theoretical analysis of Si2H6 adsorption on hydrogenated silicon surfaces for fast deposition using intermediate pressure SiH4 capacitively coupled plasma, Coatings, 2021, vol. 11, no. 9, p. 1041. https://doi.org/10.3390/coatings11091041

    Article  Google Scholar 

  16. Klimin, V.S., Kessler, I.O., Morozova, Y.V., Saenko, A.V., Vakulov, Z.E., and Ageev, O.A., Study of silicon etching modes in combined plasma discharge for the formation of optoelectronic structures, Bull. Russ. Acad. Sci.: Phys., 2022, vol. 86, no. S1, pp. S96–S99. https://doi.org/10.3103/s1062873822700460

    Article  Google Scholar 

  17. Zeze, D.A., Forrest, R.D., Carey, J.D., Cox, D.C., Robertson, I.D., Weiss, B.L., and Silva, S.R.P., Reactive ion etching of quartz and Pyrex for microelectronic applications, J. Appl. Phys., 2002, vol. 92, no. 7, pp. 3624–3629. https://doi.org/10.1063/1.1503167

    Article  Google Scholar 

  18. Winkler, T., Kirchhoff, V., and Goedicke, K., Requirements of new pulse power-supplies regarding reactive sputtering processes and adjustment of layer properties, Presentation at European Workshop on Pulsed Plasma Surface Technologies, Dresden: 2002.

  19. Han, Ch.-F., Lin, Ch.-Ch., and Lin, J.-F., Applications of energy flux and numerical analyses to the plasma etching of silicon deep trench isolation (DTI) structures, Precis. Eng., 2021, vol. 71, pp. 141–152. https://doi.org/10.1016/j.precisioneng.2021.03.008

    Article  Google Scholar 

  20. Alvarez, H.S., Cioldin, F.H., Silva, A.R., Espinola, L.C.J., Vaz, A.R., and Diniz, J.A., Silicon micro-channel definition via ICP-RIE plasma etching process using different aluminum hardmasks, J. Microelectromech. Syst., 2021, vol. 30, no. 4, pp. 668–674. https://doi.org/10.1109/jmems.2021.3088640

    Article  Google Scholar 

  21. Cacho, M.G., Benotmane, K., Pimenta-Barros, P., Tiron, R., and Possémé, N., Selective plasma etching of silicon-containing high chi block copolymer for directed self-assembly (DSA) application, J. Vac. Sci. Technol. B: Nanotechnol. Microelectron., 2021, vol. 39, no. 41, p. 042801.

    Article  Google Scholar 

  22. Klimin, V.S., Kessler, I.O., Morozova, Y.V., Saenko, A.V., Vakulov, Z.E., and Ageev, O.A., Application of fluoride plasma for the formation of nanoscale structures on the surface of silicon, Appl. Phys., 2022, no. 6, pp. 23–28.

  23. Choi, J.H., Yoon, J., Jung, Yo., Min, K.W., Im, W.B., and Kim, H.-J., Analysis of plasma etching resistance for commercial quartz glasses used in semiconductor apparatus in fluorocarbon plasma, Mater. Chem. Phys., 2021, vol. 272, p. 125015. https://doi.org/10.1016/j.matchemphys.2021.125015

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The results were obtained using the infrastructure of the Research and Education Centre “Nanotechnologies” of Southern Federal University and Laser Institute, Qilu University of Technology (Shandong Academy of Sciences).

Funding

The designing part is supported by Innovation Team Program of Jinan, China (grant no. 202228032), Science and Education Industry Program of Jinan, China (grant no. 2022JBZ01-04) and National Cooperation Project of Jinan, China (grant no. 2022GH001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Gusev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, E.Y., Klimin, V.S., Avdeev, S.P. et al. Terahertz All-Dielectric Metalens: Design and Fabrication Features. Russ Microelectron 52 (Suppl 1), S145–S150 (2023). https://doi.org/10.1134/S1063739723600607

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600607

Keywords:

Navigation