Skip to main content
Log in

Atypical Raman Scattering on Magnetic Junctions in Metallic Nanowires

  • DEVICES: MAGNETICS
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

We fabricated arrays of parallel nanowires. Each of the nanowires consists of two different magnetic metals. Using Raman spectrometry, we studied the spectra that appear when a heterojunction between metals is illuminated by a laser and studied the effect of an external magnetic field on the spectra. We also measured the dependence of the intensity of the spectra on the position of the laser spot (in the region of heterojunctions) and on the radiation intensity and we hypothesized the threshold nature of excitation. Near the contact of two metals, the symmetry of the crystal lattice is broken due to amorphization, and a nonzero orbital momentum of the electrons appears. As a result, another radiative transition of electrons become allowed without spin flip, which is sensitive to the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig.6.

REFERENCES

  1. Nikitov, S.A., Safin, A.R., and Kalyabin, D.V., Dielectric magnonics: From gigahertz to terahertz, Phys. Usp., 2020, vol. 63, pp. 945–974. https://doi.org/10.3367/UFNe.2019.07.038609

    Article  Google Scholar 

  2. Korenivski, V., Iovan, A., Kadigrobov, A., and Shekhter, R.I., Spin laser based on magnetic nano-contact array, Europhys. Lett., 2013, vol. 104, no. 2, p. 27011. https://doi.org/10.1209/0295-5075/104/27011

    Article  Google Scholar 

  3. Kadigrobov, M., Shekhter, R.I., and Kulinich, S.I., Hot electrons in magnetic point contacts as a photon source, New J. Phys., 2011, vol. 13, no. 2, p. 023007. https://doi.org/10.1088/1367-2630/13/2/023007

    Article  Google Scholar 

  4. Kadigrobov, A., Ivanov, Z., Claeson, T., Shekhter, R.I., and Jonson, M., Giant lasing effect in magnetic nanoconductors, Europhys. Lett., 2004, vol. 67, no. 6, pp. 948–954. https://doi.org/10.1209/epl/i2004-10159-8

    Article  Google Scholar 

  5. Martin, C.R., Nanomaterials: A membrane-based synthetic approach, Science, 1994, vol. 268, no. 5193, pp. 1961–1966. https://doi.org/10.1126/science.266.5193.1961

    Article  Google Scholar 

  6. Vazquez, M., Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications, Woodhead Publishing, 2015.

    Google Scholar 

  7. Fert, A. and Piraux, L., Magnetic nanowires, J. Magn. Magn. Mater., 1999, vol. 200, nos. 1–3, pp. 338–358. https://doi.org/10.1016/S0304-8853(99)00375-3

    Article  Google Scholar 

  8. Gulyaev, Y.V., Chigarev, S.G., and Panas, A.I., Generation of terahertz radiation in magnetic junctions based on nanowires, Tech. Phys. Lett., 2019, vol. 45, pp. 271–273. https://doi.org/10.1134/S1063785019030271

    Article  Google Scholar 

  9. Fomin, L.A., Krishtop, V.G., Zhukova, E.S., Zhukov, S.S., Zagorsky, D.L., Doludenko, I.M., Chigarev, S.G., Vilkov, E.A., and Panas, A.I., Investigations of the transmission and reflection spectra of THz radiation of magnetic metallic nanowires, Proc. SPIE, 2022, vol. 12157, p. 1215706. https://doi.org/10.1117/12.2623795

    Article  Google Scholar 

  10. Fomin, L.A., Zagorskiy, D.L., Chigarev, S.G., Vilkov, E.A., Krishtop, V.G., Doludenko, I.M., and Zhukov, S.S., Study of reflection and transmission spectra of arrays of heterogeneous ferromagnetic nanowires in the terahertz and far infrared ranges, Tech. Phys., 2022, vol. 67, no. 8, p. 961. https://doi.org/10.21883/TP.2022.08.54557.71-22

    Article  Google Scholar 

  11. Wakabayashi, N., Scherm, R.H., and Smith, H.G., Lattice dynamic of Ti, Co, Tc, and other hcp transition metals, Phys. Rev. B, 1982, vol. 25, p. 5122. https://doi.org/10.1103/PhysRevB.25.5122

    Article  Google Scholar 

  12. Quantum Espresso. https://www.quantum-espresso.org/.

  13. Irkhin, V.Yu. and Irkhin, Y.U.P., Electronic Structure, Correlation Effects and Physical Properties of d- and f‑Metals and Their Compounds, 2007, p. 464.

  14. Kappert, R.J.H., Borsje, H.R., and Fuggle, J.C., High energy spectroscopies and magnetism, J. Magn. Magn. Mater., 1991, vol. 100, nos. 1–3, pp. 363–393. https://doi.org/10.1016/0304-8853(91)90829-Y

    Article  Google Scholar 

  15. Brooks, H., Ferromagnetic anisotropy and the itinerant electron model, Phys. Rev., 1940, vol. 58, no. 10, p. 909. https://doi.org/10.1103/PhysRev.58.909

    Article  Google Scholar 

  16. Irkhin, Yu.P., Electron structure of the 4f shells and magnetism of rare-earth metals, Sov. Phys. Usp., 1988, vol. 31, pp. 163–170. https://doi.org/10.1070/PU1988v031n02ABEH005700

    Article  Google Scholar 

Download references

Funding

The presented study is performed within the state task of FSRC “Crystallography and Photonics” RAS and within the IMT RAS state task no. 075-01304-23-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Krishtop or D. Zagorskiy.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishtop, V., Korepanov, V., Fomin, L. et al. Atypical Raman Scattering on Magnetic Junctions in Metallic Nanowires. Russ Microelectron 52 (Suppl 1), S59–S66 (2023). https://doi.org/10.1134/S1063739723600589

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600589

Keywords:

Navigation