Skip to main content
Log in

Technique of Time Depend Dielectric Breakdown for the Wafer-Level Testing of Thin Dielectrics of MIS Devices

  • DIAGNOSTICS
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract—

The paper proposes a novel technique of time depend dielectric breakdown for the wafer-level testing of thin dielectric of MIS devices based on concatenation of J-Ramp and Bounded J-Ramp methods. The suggested method enhances the existing method capabilities by introducing measurement injection modes. When DUT is under the measurement mode, the charge injection into the gate dielectric is realized under constant current density Jm at which any significant charge degradation of dielectric is not observed. Introduction of the measurement modes give an opportunity to monitor a change of the charge state of thin gate dielectric during all the test. The suggested test is started similar to Bounded J-Ramp method and then in order to raise the monitoring speed, the value of bounded current Jb could be step wisely increased over certain time intervals which are much longer in time in comparison with J-Ramp method. As a result, the charge injection into the gate dielectric could be implemented under multiple Jb values. This test algorithm gives an opportunity to greatly enhance functional capabilities of the existing test methods and the suggested technique raises speed to test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Martin, A., Hagen, J., and Alers, G.B., Ramped current stress for fast and reliable wafer level reliability monitoring of thin gate oxide reliability, Microelectron. Reliab., 2003, vol. 43, pp. 1215–1220. https://doi.org/10.1016/S0026-2714(03)00188-4

    Article  Google Scholar 

  2. Martin, A., Vollertsen, R.-P., Mitchell, A., Traving, M., Beckmeier, D., and Nielen, H., Fast wafer level reliability monitoring as a tool to achieve automotive quality for a wafer process, Microelectron. Reliab., 2016, vol. 64, pp. 2–12. https://doi.org/10.1016/j.microrel.2016.07.120

    Article  Google Scholar 

  3. Strong, A., Wu, E., Vollertsen, R., Sune, J., Rosa, G., Rauch, S., and Sullivan, T., Reliability Wearout Mechanisms in Advanced CMOS Technologies, IEEE Press Series on Microelectronic Systems, Wiley, 2009.

  4. Lombardo, S., Stathis, J.H., Linder, P., Pey, K.L., Palumbo, F., and Tung, C.H., Dielectric breakdown mechanisms in gate oxides, J. Appl. Phys., 2005, vol. 98, pp. 1–36. https://doi.org/10.1063/1.2147714

    Article  Google Scholar 

  5. Wu, E.Y., Facts and myths of dielectric breakdown processes-Part I: Statistics, experimental, and physical acceleration models, IEEE Trans. Electron Devices, 2019, vol. 66, pp. 4523–4534. https://doi.org/10.1109/TED.2019.2933612

    Article  Google Scholar 

  6. Palumbo, F., We, C., Lombardo, S., Pazos, S., Aguirre, F., Eizenberg, M., Hui, F., and Lanza, M., A review on dielectric breakdown in thin dielectrics: Silicon dioxide, high-k, and layered dielectrics, Adv. Funct. Mater, 2019, vol. 30, no. 18, p. 1900657. https://doi.org/10.1002/adfm.201900657

    Article  Google Scholar 

  7. Palumbo, F., Lombardo, S., and Eizenberg, M., Physical mechanism of progressive breakdown in gate oxides, J. Appl. Phys., 2014, vol. 115, p. 224101. https://doi.org/10.1063/1.4882116

    Article  Google Scholar 

  8. Mcpherson, J.W., Khamankar, R.B., and Shanware, A., Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics, J. Appl. Phys., 2000, vol. 88, pp. 5351–5359. https://doi.org/10.1063/1.1318369

    Article  Google Scholar 

  9. McPherson, J.W., Time dependent dielectric breakdown physics—Models revisited, Microelectron. Reliab., 2012, vol. 52, pp. 1753–1760. https://doi.org/10.1016/j.microrel.2012.06.007

    Article  Google Scholar 

  10. Pazos, S.M., Baldomá, S.B., Aguirre, F.L., Krylov, I., Eizenberg, M., and Palumbo, F., Impact of bilayered oxide stacks on the breakdown transients of metal-oxide-semiconductor devices: An experimental study, J. Appl. Phys., 2020, vol. 127, p. 174101. https://doi.org/10.1063/1.5138922

    Article  Google Scholar 

  11. Padovani, A., Gao, D.Z., Shluger, A.L., and Larcher, L., A microscopic mechanism of dielectric breakdown in SiO2 films: An insight from multi-scale modeling, J. Appl. Phys., 2017, vol. 121, p. 155101. https://doi.org/10.1063/1.4979915

    Article  Google Scholar 

  12. JEDEC Standard, JESD35–A: Procedure for the Wafer–Level Testing of Thin Dielectrics, 2001.

  13. JEDEC Standard JESD92: Procedure for characterizing time depend dielectric breakdown of ultra-thin gate dielectrics, 2003.

  14. JEDEC Standard 122E: Failure Mechanisms and Models tor Semiconductor Devices, 2009.

  15. Arnold, D., Cartier, E., and Dimaria, D.J., Theory of high-field electron transport and impact ionization in silicon dioxide, Phys. Rev. B, 1994, vol. 49, no. 15, pp. 10278–10297. https://doi.org/10.1103/PhysRevB.49.10278

    Article  Google Scholar 

  16. Dimaria, D.J., Cartier, E., and Buchanan, D.A., Anode hole injection and trapping in silicon dioxide, J. Appl. Phys., 1996, vol. 80, pp. 304–317. https://doi.org/10.1063/1.362821

    Article  Google Scholar 

  17. Popov, A.I., Kotomin, E.A., and Maier, J., Basic properties of the F-type centers in halides, oxides and perovskites, Nucl. Instrum. Methods Phys. Res., Sect. B, 2010, vol. 268, no. 19, pp. 3084–3089. https://doi.org/10.1016/j.nimb.2010.05.053

    Article  Google Scholar 

  18. Andreev, D.V., Maslovsky, V.M., Andreev, V.V., and Stolyarov, A.A., Modification of bounded J-Ramp method to monitor reliability and charge degradation of gate dielectric of MIS devices, Proc. SPIE, 2022, vol. 12157, p. 121571M. https://doi.org/10.1117/12.2623812

    Article  Google Scholar 

  19. Andreev, D.V., Maslovsky, V.M., Andreev, V.V., and Stolyarov, A.A., Modified ramped current stress technique for monitoring thin dielectrics reliability and charge degradation, Phys. Status Solidi (a), 2022, vol. 219, no. 9, pp. 2100400–2100401. https://doi.org/10.1002/pssa.202100400

    Article  Google Scholar 

  20. Kim, A., Wu, E., Li, B., and Linder, B., Transformation of ramped current stress VBD to constant voltage stress TDDB TBD, IEEE Int. Reliability Physics Symp. (IRPS), Monterey, Calif., 2019, IEEE, 2019, pp. 1–5. https://doi.org/10.1109/IRPS.2019.8720572

  21. Andreev, V.V., Bondarenko, G.G., Maslovsky, V.M., Stolyarov, A.A., and Andreev, D.V., Control current stress technique for the investigation of gate dielectrics of MIS devices, Phys. Status Solidi (c), 2015, vol. 12, no. 3, pp. 299–303. https://doi.org/10.1002/pssc.201400119

    Article  Google Scholar 

  22. Andreev, V.V., Maslovsky, V.M., Andreev, D.V., and Stolyarov, A.A., Method of stress and measurement modes for research of thin dielectric films of MIS structures, Proc. SPIE, 2016, vol. 10224, p. 1022429. https://doi.org/10.1117/12.2267173

    Article  Google Scholar 

  23. Andreev, D.V., Bondarenko, G.G., Andreev, V.V., and Stolyarov, A.A., Method of stress and measurement current levels for MIS structures researching and modifying under high-field injection of electrons, IOP Conference Series: Materials Science and Engineering, 2017, vol. 168, p. 012057. https://doi.org/10.1088/1757-899X/168/1/012057

    Article  Google Scholar 

  24. Andreev, D.V., Bondarenko, G.G., Andreev, V.V., and Loskutov, S.A., Programmable set to monitor charge state change of MIS devices under high-fields, IEEE Proc. 2022 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, 2022, IEEE, 2022, pp. 1–3. https://doi.org/10.1109/MWENT55238.2022.9802396

  25. Fischetti, M.V., Generation of positive charge in silicon dioxide during avalanche and tunnel electron injection, J. Appl. Phys., 1985, vol. 57, pp. 2860–2879. https://doi.org/10.1063/1.335223

    Article  Google Scholar 

  26. Nissan-Cohen, Y., Shappir, J., and Frohman-Bentchkowsky, D., High-field and current-induced positive charge in thermal SiO2 layers, J. Appl. Phys., 1985, vol. 57, pp. 2830–2839. https://doi.org/10.1063/1.335219

    Article  Google Scholar 

  27. Ristic, G.S., Pejovic, M.M., and Jaksic, A.B., Fowler–Nordheim high electric field stress of power VDMOS-FETs, Solid-State Electron., 2005, vol. 49, no. 7, pp. 1140–1152. https://doi.org/10.1016/j.sse.2005.05.002

    Article  Google Scholar 

  28. Andreev, D.V., Bondarenko, G.G., Andreev, V.V., Maslovsky, V.M., and Stolyarov, A.A., Modification of MIS devices by radio-frequency plasma treatment, Acta Phys. Pol. A, 2019, vol. 136, no. 2, pp. 263–266. https://doi.org/10.12693/APhysPolA.136.263

    Article  Google Scholar 

  29. Andreev, D.V., Bondarenko, G.G., Andreev, V.V., and Stolyarov, A.A., Use of high-field electron injection into dielectrics to enhance functional capabilities of radiation MOS sensors, Sensors, 2020, vol. 20, no. 8, pp. 2382–2383. https://doi.org/10.3390/s20082382

    Article  Google Scholar 

  30. Andreev, V.V., Bondarenko, G.G., Maslovsky, V.M., Stolyarov, A.A., and Andreev, D.V., Modification and reduction of defects in thin gate dielectric of MIS devices by injection-thermal and irradiation treatments, Phys. Status Solidi (c), 2015, vol. 12, nos. 1–2, pp. 126–130. https://doi.org/10.1002/pssc.201400151

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Andreev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, D.V., Maslovsky, V.M. & Andreev, V.V. Technique of Time Depend Dielectric Breakdown for the Wafer-Level Testing of Thin Dielectrics of MIS Devices. Russ Microelectron 52 (Suppl 1), S279–S284 (2023). https://doi.org/10.1134/S1063739723600450

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600450

Keywords:

Navigation