Skip to main content
Log in

Effect of Vacuum Annealing on Orientation of Fluorite Films on Tilted-Axes Substrates

  • TECHNOLOGIES: THIN FILMS
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

CeO2 and Y:ZrO2 (YSZ) fluorite films were deposited on NdGaO3 (NGO) tilted-axes substrates by pulsed laser deposition technique after oxygen or vacuum annealing, the orientation features of the resulting films were studied. The fluorite films on oxygen-annealed substrates showed good agreement with the graphoepitaxial growth mechanism. An excessive tilt over the calculated values is observed for substrate tilt angles of 10°–15°, presumably as a result of generation of regular dislocations. On vacuum-annealed substrates the YSZ films showed no additional tilt, instead a re-orientation towards (012) and (013) crystallographic planes of the film is observed for tilt angles 13°–15° and 18°–20°, respectively. Similar effects are observed for CeO2 films after relaxation at critical thickness. The CeO2 films on vacuum annealed substrates are seeded with alignment of (111) plane with the (110) plane of the substrate instead of standard (001) CeO2 plane. Some part of the CeO2 grains is oriented with the (111) plane along the substrate surface. The angular vicinity of a small-index crystallographic plane to the graphoepitaxial tilt value may result in an “accidental” epitaxial alignment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Chen, H., Zhou, X., Tang, L., Chen, Y., Luo, H., Yua-n, X., Bowen, C.R., and Zhang, D., HfO2-based ferroelectrics: From enhancing performance, material design, to applications, Appl. Phys. Rev., 2022, vol. 9, p. 11307. https://doi.org/10.1063/5.0066607

    Article  Google Scholar 

  2. Fina, I. and Sánchez, F., Epitaxial ferroelectric HfO2 films: Growth, properties, and devices, ACS Appl. Electron. Mater, 2021, vol. 3, pp. 1530–1549. https://doi.org/10.1021/acsaelm.1c00110

    Article  Google Scholar 

  3. Panda, D. and Tseng, T.-Yu., Growth, dielectric properties, and memory device applications of ZrO2 thin films, Thin Solid Films, 2013, vol. 531, pp. 1–20. https://doi.org/10.1016/j.tsf.2013.01.004

    Article  Google Scholar 

  4. Grinter, D.C. and Thornton, G., Structure and reactivity of model CeO2 surfaces, J. Phys.: Condens. Matter, 2022, vol. 34, p. 253001. https://doi.org/10.1088/1361-648X/ac5d89

    Article  Google Scholar 

  5. Mozhaev, P.B., Bdikin, I.K., Luzanov, V.A., Bindslev Hansen, J., and Jacobsen, C.S., Tilting of the top layer of graphoepitaxial metal-oxide multilayer thin film heterostructures, Appl. Phys. A, 2021, vol. 127, p. 912. https://doi.org/10.1007/s00339-021-05070-y

    Article  Google Scholar 

  6. Kots, I.N., Kolomiitsev, A.S., Lisitsyn, S.A., Polyakova, V.V., Klimin, V.S., and Ageev, O.A., Studying the regimes of silicon surface profiling by focused ion beams, Russ. Microelectron., 2019, vol. 48, pp. 72–79. https://doi.org/10.1134/S1063739719020057

    Article  Google Scholar 

  7. Wu, C.H., Chen, M.J., Hsu, M.H., Chen, J.C., Chen, K.L., Chen, J.H., Jeng, J.T., Lai, T.S., Horng, H.E., and Yang, H.C., Optimization of step-edge substrates for high-TC superconducting devices, Phys. C, 2005, vol. 433, pp. 108–114. https://doi.org/10.1016/j.physc.2005.10.006

    Article  Google Scholar 

  8. Rudyi, A.S., Kulikov, A.N., and Metlitskaya, A.V., Simulation of formation of nanostructures during sputtering of the surface by ion bombardment, Russ. Microelectron., 2011, vol. 40, pp. 98–107. https://doi.org/10.1134/S1063739711020089

    Article  Google Scholar 

  9. Wang, Y., Lu, Y.F., Zhou, L., Li, C.S., Yu, Z.M., Feng, J.Q., Jin, L.H., Wang, H., and Zhang, P.X., Influence of annealing atmosphere on epitaxial growth process of the CeO2 buffer layer for coated conductors, J. Supercond. Novel Magn., 2014, vol. 27, pp. 17–21. https://doi.org/10.1007/s10948-013-2233-1

    Article  Google Scholar 

  10. Solovyov, V.F., Develos-Bagarinao, K., and Nykypanchuk, D., Nanoscale abnormal grain growth in (001) epitaxial ceria, Phys. Rev. B, 2009, vol. 80, p. 104102. https://doi.org/10.1103/PhysRevB.80.104102

    Article  Google Scholar 

  11. Wu, F., Pavlovska, A., Smith, D.J., Culbertson, R.J., Wilkens, B.J., and Bauer, E., Growth and structure of epitaxial CeO2 films on yttria-stabilized ZrO2, Thin Solid Films, 2008, vol. 516, pp. 4908–4914. https://doi.org/10.1016/j.tsf.2007.09.026

    Article  Google Scholar 

  12. Jacobsen, S.N., Helmersson, U., Erlandsson, R., Skarman, B., and Wallenberg, L.R., Sharp microfaceting of (001)-oriented cerium dioxide thin films and the effect of annealing on surface morphology, Surf. Sci., 1999, vol. 429, pp. 22–33. https://doi.org/10.1016/S0039-6028(99)00320-9

    Article  Google Scholar 

  13. Pergolesi, D., Fronzi, M., Fabbri, E., Tebano, A., and Traversa, E., Growth mechanisms of ceria- and zirconia-based epitaxial thin films and hetero-structures grown by pulsed laser deposition, Mater. Renew. Sustain. Energy, 2013, vol. 2, p. 6. https://doi.org/10.1007/s40243-012-0006-6

    Article  Google Scholar 

  14. Sunder, M. and Moran, P.D., How r-plane Al2O3 surface modifications impact the growth of epitaxial (001) CeO2 thin films, J. Electron. Mater, 2009, vol. 38, pp. 1931–1937. https://doi.org/10.1007/s11664-009-0864-6

    Article  Google Scholar 

  15. Dai, J.Y., Kaatz, F.H., Markworth, P.R., Buchholz, D.B., Liu, X., Chiou, W.A., and Chang, R.P.H., Electron microscopy study of interfacial structure and reaction of YBa2Cu3O7/Y–ZrO2 films on LaAlO3 substrates, J. Mater. Res, 1998, vol. 13, pp. 1485–1491. https://doi.org/10.1557/JMR.1998.0206

    Article  Google Scholar 

  16. Santiso, J. and Burriel, M., Deposition and characterisation of epitaxial oxide thin films for SOFCs, J. Solid State Electrochem., 2011, vol. 15, pp. 985–1006. https://doi.org/10.1007/s10008-010-1214-6

    Article  Google Scholar 

  17. Gaboriaud, R.J., Pailloux, F., and Paumier, F., Characterisation of Y2O3 thin films deposited by laser ablation on MgO: Why a biaxial epitaxy, Appl. Surf. Sci., 2002, vol. 188, pp. 29–35. https://doi.org/10.1016/S0169-4332(01)00716-4

    Article  Google Scholar 

  18. Pergolesi, D., Roddatis, V., Fabbri, E., Schneider, C.W., Lippert, T., Traversa, E., and Kilner, J.A., Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering, Sci. Technol. Adv. Mater., 2015, vol. 16, p. 15001. https://doi.org/10.1088/1468-6996/16/1/015001

    Article  Google Scholar 

  19. Kotelyanskii, I.M., Luzanov, V.A., Dikaev, Yu.M., Kravchenko, V.B., and Melekh, B.T., Deposition of CeO2 films including areas with the different orientation and sharp border between them, Thin Solid Films, 1996, vol. 280, pp. 163–166. https://doi.org/10.1016/0040-6090(95)08201-8

    Article  Google Scholar 

  20. Boikov, Yu.A., Claeson, T., and Erts, D., YBa2Cu3-O7–δ/-CeO2 heterostructures on sapphire R‑plane, Phys. Solid State, 1998, vol. 40, pp. 183–186. https://doi.org/10.1134/1.1130267

    Article  Google Scholar 

  21. Mozhaev, P.B., Mozhaeva, J.E., Khoryushin, A.V., Bindslev Hansen, J., Jacobsen, C.S., Bdikin, I.K., Kotelyanskii, I.M., and Luzanov, V.A., Three-dimensional graphoepitaxial growth of oxide films by pulsed laser deposition, Phys. Rev. Mater., 2018, vol. 2, p. 103401. https://doi.org/10.1103/PhysRevMaterials.2.103401

    Article  Google Scholar 

  22. Mozhaev, P.B., Khoryushin, A.V., Bindslev Hansen, J., and Jacobsen, C.S., Graphoepitaxial Y:ZrO2 films on vicinal (110) NdGaO3 substrates by pulsed laser deposition, Appl. Phys. A, 2022, vol. 128, p. 425. https://doi.org/10.1007/s00339-022-05567-0

    Article  Google Scholar 

  23. Mozhaev, P.B., Mozhaeva, J.E., Bdikin, I.K., Kotelyanskii, I.M., Luzanov, V.A., Bindslev Hansen, J., and Jacobsen, C.S., Graphoepitaxial growth of CeO2 thin films on tilted-axes NdGaO3 substrates by pulsed laser deposition, Nanomaterials Sci. Eng., 2020, vol. 2, no. 2, pp. 57–73. https://doi.org/10.34624/nmse.v2i2.9967

    Article  Google Scholar 

  24. Stepantsov, E., Tarasov, M., Kalabukhov, A., Kuzmin, L., and Claeson, T., THz Josephson properties of grain boundary YBaCuO junctions on symmetric, tilted bicrystal sapphire substrates, J. Appl. Phys., 2004, vol. 96, pp. 3357–3361. https://doi.org/10.1063/1.1782273

    Article  Google Scholar 

  25. Nagai, H., Structure of vapor-deposited GaxIn1–xAs crystals, J. Appl. Phys., 1974, vol. 45, pp. 3789–3794. https://doi.org/10.1063/1.1663861

    Article  Google Scholar 

  26. Budai, J.D., Yang, W., Tamura, N., Chung, J., Tischler, J.Z., Larson, B.C., Ice, G.E., Park, Ch., and Norton, D.P., X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates, Nat. Mater., 2003, vol. 2, pp. 487–492. https://doi.org/10.1038/nmat916

    Article  Google Scholar 

  27. Park, C., Norton, D.P., Verebelyi, D.T., Christen, D.K., Budai, J.D., Lee, D.F., and Goyal, A., Nucleation of epitaxial yttria-stabilized zirconia on biaxially textured (001) Ni for deposited conductors, App. Phys. Lett., 2000, vol. 76, pp. 2427–2429. https://doi.org/10.1063/1.126365

    Article  Google Scholar 

  28. Bachelet, R., Nahelou, G., Boulle, A., Guinebretiere, R., and Dauger, A., Control of the morphology of oxide nano-islands through the substrate miscut angle, Prog. Solid State Chem., 2005, vol. 33, pp. 327–332. https://doi.org/10.1016/j.progsolidstchem.2005.11.017

    Article  Google Scholar 

  29. Riesz, F., Crystallographic tilting in lattice-mismatched heteroepitaxy: A Dodson–Tsao relaxation approach, J. Appl. Phys., 1996, vol. 79, pp. 4111–4117. https://doi.org/10.1063/1.361774

    Article  Google Scholar 

  30. Hirth, J.P. and Pond, R.C., Strains and rotations in thin deposited films, Philos. Mag., 2010, vol. 90, pp. 3129–3147. https://doi.org/10.1080/14786435.2010.481269

    Article  Google Scholar 

  31. Mozhaev, P.B., Bdikin, I.K., Bindslev Hansen, J., and Jacobsen, C.S., Re-orientation of graphoepitaxial fluorite films towards small-index crystallographic planes, Proc. SPIE, 2022, vol. 12157, p. 121571. https://doi.org/10.1117/12.2623743

    Article  Google Scholar 

  32. McIntyre, P.C., Chang, B.P., Sonnenberg, N., and Cima, M.J., Defect formation in epitaxial oxide dielectric layers due to substrate surface relief, J. Electron. Mater., 1995, vol. 24, pp. 735–745. https://doi.org/10.1007/BF02659733

    Article  Google Scholar 

  33. Fabbri, E., Pergolesi, D., and Traversa, E., Ionic conductivity in oxide heterostructures: The role of interfaces, Sci. Technol. Adv. Mater., 2010, vol. 11, p. 054503. https://doi.org/10.1088/1468-6996/11/5/054503

    Article  Google Scholar 

  34. Fluri, A., Pergolesi, D., Roddatis, V., Wokaun, A., and Lippert, T., In situ stress observation in oxide films and how tensile stress influences oxygen ion conduction, Nat. Commun., 2016, vol. 7, p. 10692. https://doi.org/10.1038/ncomms10692

    Article  Google Scholar 

  35. Wang, C.M., Engelhard, M.H., Azad, S., Saraf, L.V., McCready, D.E., Shutthanandan, V., Yu, Z.Q., Thevuthasan, S., Watanabe, M., and Williams, D.B., Distribution of oxygen vacancies and gadolinium dopants in ZrO2–CeO2 multi-layer films grown on α‑Al2O3, Solid State Ionics, 2006, vol. 177, pp. 1299–1306. https://doi.org/10.1016/j.ssi.2006.05.036

    Article  Google Scholar 

Download references

Funding

The presented study was supported by Program no. FFNN-2022-0019 of the Ministry of Science and Higher Education of Russian Federation for Valiev Institute of Physics and Technology of RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Mozhaev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozhaev, P.B., Hansen, J.B. & Jacobsen, C.S. Effect of Vacuum Annealing on Orientation of Fluorite Films on Tilted-Axes Substrates. Russ Microelectron 52 (Suppl 1), S199–S208 (2023). https://doi.org/10.1134/S1063739723600383

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600383

Keywords:

Navigation