Skip to main content
Log in

Blockwise Maximization of the Secret Key with Signal Breaks in Satellite-Based Quantum Key Distribution

  • QUANTUM INFORMATICS: COMMUNICATION
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Satellite-based quantum communication is a promising technology for the secure worldwide sharing of data because quantum states are conveyed across free-space links with significantly less attenuation than optical fiber. However, the restricted communication time and dynamic parameter changes limit the secret key length, and to maximize the possible final key, an effective division of satellite-to-ground quantum communication at intervals must be chosen. Here, we present an original blockwise analysis for maximizing secret key length using the signal-to-noise ratio obtained after the frequency synchronization procedure. To validate our method, we perform an experimental simulation of the quantum key distribution protocol between the Micius satellite and the 600 mm aperture ground station with additional random channel breaks. As a result, the proposed blockwise method leads to an increase in the final key length compared to processing the full amount of noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Bennett, C.H. and Brassard, G., Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci., 2014, vol. 560, pp. 7–11. https://doi.org/10.1016/j.tcs.2014.05.025

    Article  MathSciNet  Google Scholar 

  2. Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H., Quantum cryptography, Rev. Mod. Phys., 2002, vol. 74, no. 1, pp. 145–195. https://doi.org/10.1103/RevModPhys.74.145

    Article  Google Scholar 

  3. Xu, F., Ma, X., Zhang, Q., Lo, H.K., and Pan, J.W., Secure quantum key distribution with realistic devices, Rev. Mod. Phys., 2020, vol. 92, no. 2, p. 25002. https://doi.org/10.1103/RevModPhys.92.025002

    Article  MathSciNet  Google Scholar 

  4. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N., and Peev, M., The security of practical quantum key distribution, Rev. Mod. Phys., 2009, vol. 81, no. 3, pp. 1301–1350. https://doi.org/10.1103/RevModPhys.81.1301

    Article  Google Scholar 

  5. Shor, P.W. and Preskill, J., Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett., 2000, vol. 85, no. 2, p. 441. https://doi.org/10.1103/PhysRevLett.85.441

    Article  Google Scholar 

  6. Shor, P.W., Algorithms for quantum computation: Discrete logarithms and factoring, IEEE, 1994, pp. 124–134. https://doi.org/10.1109/SFCS.1994.365700

    Book  Google Scholar 

  7. Grover, L.K., A fast quantum mechanical algorithm for database search, Proc. Twenty-Eighth Annu. ACM Symp. on Theory of Computing, Philadelphia, 1996, New York: Association for Computing Machinery, 1996, pp. 212–219. https://doi.org/10.1145/237814.237866

  8. Liu, Y., Zhang, W.J., Jiang, C., Chen, J.P., et al., Experimental twin-field quantum key distribution over 1000 km fiber distance, Phys. Rev. Lett., 2023, vol. 130, p. 210801. https://doi.org/10.1103/PhysRevLett.130.210801

    Article  Google Scholar 

  9. Vergoossen, T., Loarte, S., Bedington, R., Kuiper, H., and Ling, A., Modelling of satellite constellations for trusted node QKD networks, Acta Astronaut., 2020, vol. 173, pp. 164–171. https://doi.org/10.1016/j.actaastro.2020.02.010

    Article  Google Scholar 

  10. Wang, X., Dong, C., Zhao, S., Liu, Y., Liu, X., and Zhu, H., Feasibility of space-based measurement-device-independent quantum key distribution, New J. Phys., 2021, vol. 23, p. 045001. https://doi.org/10.1088/1367-2630/abf534

    Article  Google Scholar 

  11. Chou, H.F., Ha, V.N., Al-Hraishawi, H., Garces-Socarras, L.M., Gonzalez-Rios, J.L., Merlano-Duncan, J.C., and Chatzinotas, S., arXiv Preprint, 2023. doi

  12. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Pan, J.W., et al., Satellite-to-ground quantum key distribution, Nature, 2017, vol. 549, pp. 43–47. https://doi.org/10.1038/nature23655

    Article  Google Scholar 

  13. Lu, C.Y., Cao, Y., Peng, C.Z., and Pan, J.W., Micius quantum experiments in space, Rev. Mod. Phys., 2022, vol. 94, p. 35001. https://doi.org/10.1103/RevModPhys.94.035001

    Article  Google Scholar 

  14. Khmelev, A.V., Duplinsky, A.V., Mayboroda, V.F., Bakhshaliev, R.M., Balanov, M.Y., Kurochkin, V.L., and Kurochkin, Y.V., Recording of a single-photon signal from low-flying satellites for satellite quantum key distribution, Tech. Phys. Lett., 2021, vol. 47, pp. 858–861. https://doi.org/10.1134/S1063785021090078

    Article  Google Scholar 

  15. Khmelev, A.V., Duplinsky, A.V., Bakhshaliev, R.M., et al., Eurasian-scale experimental satellite-based quantum key distribution with detector efficiency mismatch analysis, arXiv Preprint, 2023. https://doi.org/10.48550/arXiv.2310.17476

  16. Khmelev, A.V., Ivchenko, E.I., Miller, A.V., Duplinsky, A.V., Kurochkin, V.L., and Kurochkin, Yu.V., Semi-empirical satellite-to-ground quantum key distribution model for realistic receivers, Entropy, 2023, vol. 25, p. 670. https://doi.org/10.3390/e25040670

    Article  Google Scholar 

  17. Chernov, A.N., Khmelev, A.V., and Kurochkin, V.L., Optimized satellite quantum signal tracking frequency restoration, XIX Mezhdunarodnaya molodezhnaya konferentsiya po lyuminestsentsii i lazernoi fizike (XIX Int. Youth Conf. on Luminescence and Laser Physics), Martynovich, E.F., Ed., Irkutsk: Irkutsk. Gos. Univ., 2023, p. 216. https://elibrary.ru/item.asp?id=54224390.

    Google Scholar 

  18. Wang, C.Z., Li, Y., Cai, W.Q., Liu, W.Y., Liao, S.K., and Peng, C.Z., Synchronization using quantum photons for satellite-to-ground quantum key distribution, Opt. Express, 2021, vol. 29, pp. 29595–29603. https://doi.org/10.1364/OE.433631

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation within the framework of the Strategic Academic Leadership Program “Priority 2030” (Strategic Project “Quantum Internet”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Ivchenko or V. Kurochkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivchenko, E., Chernov, A., Khmelev, A. et al. Blockwise Maximization of the Secret Key with Signal Breaks in Satellite-Based Quantum Key Distribution. Russ Microelectron 52 (Suppl 1), S317–S321 (2023). https://doi.org/10.1134/S1063739723600164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723600164

Keywords:

Navigation