Skip to main content
Log in

Influence of Technological Parameters during Multiwire Cutting of GaAs Ingots on the Surface Characteristics of the Plates

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The mechanical processing of semiconductor monocrystalline ingots is one of the key stages in the production of GaAs plates. The main issue for obtaining high-quality plates is to determine the optimal parameters of machining and identify the dependences of the surface quality of the substrates after cutting from the parameters set in this technological process. The technology for the production of polished semiconductor plates (substrates) for almost all semiconductor materials is similar and differs only in a number of distinctive features related to the mechanical and structural features of individual materials. Mechanical processing is the first stage after crystal growth, in which it is necessary to observe and improve many technological parameters to obtain high-quality finished products. In the technological process of processing a semiconductor, it is necessary first of all to divide the crystal into plates with similar surface characteristics. The quality of this separation determines which plates will be obtained and how suitable they will be as substrates for the production of devices in mass production. The study of the influence of cutting parameters on the structure of the damaged layer and the basic geometric parameters of the plates allows us to identify the optimal parameters of mechanical cutting and identify the range of deviations possible to obtain plates of similar quality for further processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Mayanov, E., Hasanov, A., Knyazev, S., and Naumov, A., GaAs monocrystals’ market trends, Elektron.: Nauka, Tekhnol., Biznes, 2018, no. 2 (173), pp. 172–184. https://doi.org/10.22184/1992-4178.2018.173.2.172.184

  2. Goldstein, J.I., Newbury, D.E., Michael, J.R., Ritchie, N.W.M., Scott, J.H.J., and Joy, D.C., Scanning Electron Microscopy and X-ray Microanalysis, New York: Springer, 2018. https://doi.org/10.1007/978-1-4939-6676-9

    Book  Google Scholar 

  3. Mayanov, E., Parkhomenko, Y., and Naumov, A., Fundamental silicon: Industrial semiconductor materials science in Russia, Elektron.: Nauka, Tekhnol., Biznes, 2017, no. 4 (164), pp. 98–104. https://doi.org/10.22184/1992-4178.2017.164.4.98.104

  4. Parfenteva, I.B., Pugachev, B.V., Pavlov, V.F., Kozlova, Yu.P., Knyazev, C.N., and Yugova, T.G., Specific features of the formation of dislocation structure in gallium arsenide single crystals obtained by the Czochralski method, Crystallogr. Rep., 2017, vol. 62, no. 2, pp. 275–278. https://doi.org/10.1134/s1063774517020201

    Article  ADS  CAS  Google Scholar 

  5. Kulchitskiy, N.A., Mayanov, E.P., and Naumov, A.V., Gallium arsenide: The basic material of microwave electronics, Nano- Mikrosistemnaya Tekh., 2017, vol.  19, no. 4, pp. 207–214. https://doi.org/10.17587/nmst.19.207-214

  6. Zulehner, W., Historical overview of silicon crystal pulling development, Mater. Sci. Eng., B, 2023, vol. 73, nos. 1–3, pp. 7–15. https://doi.org/10.1016/s0921-5107(99)00427-4

    Article  Google Scholar 

  7. Uecker, R., The historical development of the Czochralski method, J. Cryst. Growth, 2014, vol. 401, no. 99, pp. 7–25. https://doi.org/10.1016/j.jcrysgro.2013.11.095

    Article  ADS  CAS  Google Scholar 

  8. Naumov, A., The method of creation of the world. On the 100th anniversary of Czochralski method development and the 60th anniversary of the first germanium crystal growth in Russia, ELEKTRONIKA: Nauka, Tekhnologiya, Biznes, 2016, no. 9 (159), pp. 157–167.

  9. Levonovich, B.N., On the development of the production of materials for electronics, II Mezhdunar. nauch.-prakt. konf. Redkie metally i materialy na ikh osnove. Tekhnologii, svoistva i primenenie, posvyashchennaya pamyati akademika N.P. Sazhina. RedMet-2022 (II Int. Sci.-Pract. Conf. on Rare Metals and Materials Based on Them: Technologies, Properties and Applications Dedicated to the Memory of Academician N.P. Sazhin: RareMet-2022), Moscow: RedMet, 2022.

  10. Knyazev, S.N. and Yugova, T.G., Problems of growth of structurally perfect single crystals of gallium arsenide by the Czochralski method, Redkie metally i materialy na ikh osnove: tekhnologii, svoistva i primenenie. RedMet-2021. Sazhinskie chteniya (Rare Metals and Materials Based on Them: Technologies, Properties and Applications: RareMe-2021. Sazhinsky Readings), Moscow: RedMet, 2021, p. 37.

    Google Scholar 

  11. Perelomova, N.V. and Tagieva, M.M., Kristallofizika (Crystal Physics), Moscow: Mosk. Inst. Stalei i Splavov, 2013.

    Google Scholar 

  12. Shalimova, K.V., Fizika poluprovodnikov (Physics of Semiconductors), St. Petersburg: Lan’, 2010.

  13. Levchenko, D.S., Teplova, T.B., and Yugova, T.G., Investigation of the dislocation structure of gallium arsenide single crystals used to create devices for ultrahigh-speed microelectronics, Materialy II Mezhdunar. nauch.-prakt. konf. Ekonomika i prakticheskii menedzhment v Rossii i za rubezhom (Proc. II Int. Sci.-Pract. Conf. on Economics and Practical Management in Russia and Abroad), Kolomna, Moscow oblast: Mosk. Gos. Mashinostr. Univ. (MAMI), 2015, pp. 135–137.

  14. Sluchinskaya, I.A., Osnovy materialovedeniya i tekhnologii poluprovodnikov (Fundamentals of Materials Science and Semiconductor Technology), Moscow: Mir, 2002.

  15. Avrov, D.D., Lebedev, A.O., and Tairov, Yu.M., Main defects in ingots and epitaxial layers of silicon carbide. I. Dislocation structure and morphological defects. Review, Izv. Vyssh. Uchebn. Zaved., Elektron., 2015, vol. 20, no. 3, pp. 225–238. https://doi.org/10.30724/1998-9903-2018-20-1-2

    Article  Google Scholar 

  16. Kosushkin, V.G., Kozhitov, L.V., and Kozhitov, S.L., Stateand growing problem of high uniformity semiconductor single crystals, Izv. Yugo-Zapadnogo Gos. Univ. Ser.: Tekh. Tekhnol., 2013, no. 1, pp. 10–22.

  17. Kudrya, A.V., Sokolovskaya, E.A., Skorodumov, S.V., Trachenko, V.A., and Papina, K.B., Possibilities of digital optical microscopy for objective certification of the quality of metalware, Met. Sci. Heat Treat., 2018, vol. 60, nos. 3–4, pp. 216–223. https://doi.org/10.1007/s11041-018-0263-9

    Article  ADS  CAS  Google Scholar 

  18. Suvorov, E.V., Fizicheskie osnovy eksperimental’nykh metodov issledovaniya real’noi struktury kristallov (Physical Foundations of Experimental Methods for Studying the Real Structure of Crystals), Inst. Fiz. Tverdogo Tela Ross. Akad. Nauk, 2021.

  19. Komarovsky, N.Yu., Yushchuk, V.V., Bindyug, D.V., and Bogembaev, N.R., Investigation of the defect distribution gradient in single-crystal silicon and gallium arsenide plates using X-ray topography, Meždunarodnyj Naučno-Issledovatel’skij Žurnal, 2021, no. 4-1 (106), pp. 26–31. https://doi.org/10.23670/IRJ.2021.106.4.004

  20. Knyazev, S.N., Komarovsky, N.Yu., Chuprakov, V.A., and Yushchuk, V.V., Influence of technological parameters on the structural perfection of single-crystal gallium arsenide, Mezhdunar. nauch. konf. Sovremennye materialy i peredovye proizvodstvennye tekhnologii (SMPPT-2021) (Int. Sci. Conf. on Modern Materials and Advanced Production Technologies (SMPPT-2021)), St. Petersburg: S.-Peterb. Politekh. Univ. Petra Velikogo, 2021, pp. 218–220.

  21. Viglin, N.A., Gribov, I.V., Tsvelikhovskaya, V.M., and Patrakov, E.I., Oxide removal from the InSb plate surface to produce lateral spin valves, Semiconductors, 2019, vol. 53, no. 2, pp. 264–267. https://doi.org/10.1134/s1063782619020258

    Article  ADS  CAS  Google Scholar 

  22. Fainshtein, S.M., Obrabotka poverkhnosti poluprovodnikovykh priborov (Semiconductor Surface Treatment), Moscow: Energiya, 1966.

  23. Levchenko, I.V., Stratiychuk, I.B., Tomashyk, V.N., Malanych, G.P., and Korchovyi, A.A., Features of the chemical polishing of InAs, GaAs, InSb and GaSb crystals in the (NH4)2Cr2O7-HBr-CH2(OH)CH2(OH) solutions, Vopr. Khim. Khim. Technologii, 2017, no. 2 (111), pp. 29–35.

  24. Maslov, A.A., Tekhnologiya i konstruktsii poluprovodnikovykh priborov (Technology and Design of Semiconductor Devices), Moscow: Energiya, 1970.

  25. Samoylov, A.M., Belenko, S.V., Siradze, B.A., Toreev, A.S., Dontsov, A.I., and Filonova, I.V., The dislocation density in PbTe films on Si (100) and BaF2 (100) substrates prepared by modified hot wall technique, Kondensirovannye Sredy Mezhfaznye Granitsy, 2013, vol. 15, no. 3, pp. 322–331.

    CAS  Google Scholar 

  26. Suslov, A.A. and Chizhik, S.A., Scanning probe microscopes (overview), Mater., Tekhnol., Instrum., 1997, no. 3, pp. 78–89. http://microtm.com/download/mti-spmreview.pdf.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Nestyurkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podgorny, D.A., Nestyurkin, M.S. & Komarovskiy, N.Y. Influence of Technological Parameters during Multiwire Cutting of GaAs Ingots on the Surface Characteristics of the Plates. Russ Microelectron 52, 750–756 (2023). https://doi.org/10.1134/S1063739723080097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739723080097

Keywords:

Navigation