Skip to main content
Log in

Study of the Abnormally High Photocurrent Relaxation Time in α-Ga2O3-Based Schottky Diodes

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

Ga2O3 is a wide-bandgap material with a number of unique characteristics that make it a promising material for photonics: it is optically transparent to optical and near-ultraviolet radiation and has a high breakdown voltage and high radiation resistance. One of the shortcomings that currently prevent the use of this material in solar-blind photodetectors is the anomalously long rise and decay time of photoconductivity, which can reach hundreds of seconds. Such a slowdown of the photoconductivity significantly limits the application area of these materials. The nature of this effect is studied. The rise and decay times of the photoinduced current in α-Ga2O3 Schottky diodes grown by the HVPE method on sapphire are measured under LED illumination at 259 and 530 nm. Under exposure to ultraviolet radiation, the current through the photosensitive structure of two opposing diodes increases in three stages: a very fast increase with a characteristic time of 70 ms, a slow increase with a characteristic time of 40 s, and a prolonged decay with a characteristic time of ~300 s. Upon subsequent illumination with green radiation, the increase in current with a characteristic time of 130 and 40 s is superimposed on a slow decrease in the amplitude of the maximal current with a characteristic time of ~1500 s. The analysis of the current relaxation shows the presence of deep centers with an energy of EC = 0.17 eV. A significant slowdown in the relaxation of the photoinduced current can be associated with potential fluctuations near the Schottky barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Pearton, S.J., Yang, J., Cary, P.H., Ren, F., Kim, J., Tadjer, M.J., and Mastro, M.A., A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev., 2018, vol. 5, p. 11301. https://doi.org/10.1063/1.5006941

    Article  CAS  Google Scholar 

  2. Pearton, S.J., Ren, F., Tadjer, M., and Kim, J., Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS, J. Appl. Phys., 2018, vol. 124, p. 220901. https://doi.org/10.1063/1.5062841

    Article  ADS  CAS  Google Scholar 

  3. Zhang, J., Shi, J., Qi, D.-C., Chen, L., and Zhang, K.H.L., Recent progress on the electronic structure, defect, and doping properties of Ga2O3, APL Mater., 2020, vol. 8, no. 2, p. 20906. https://doi.org/10.1063/1.5142999

    Article  CAS  Google Scholar 

  4. Yu, X., An, Z., Zhang, L., Feng, Q., Zhang, J., Zhang, C., and Hao, Y., Solar blind deep ultraviolet β-Ga2O3 photodetectors grown on sapphire by the Mist-CVD method, Opt. Mater. Express, 2018, vol. 8, no. 9, pp. 2941–2947. https://doi.org/10.1364/OME.8.002941

    Article  ADS  Google Scholar 

  5. Wei, Y., Li, X., Yang, J., Liu, C., Zhao, J., Liu, Y., and Dong, S., Interaction between hydrogen and gallium vacancies in β-Ga2O3, Sci. Rep., 2018, vol. 8, p. 10142. https://doi.org/10.1038/s41598-018-28461-3

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ingebrigtsen, M.E., Kuznetsov, A.Yu., Svensson, B.G., Alfieri, G., Mihaila, A., Badstübner, U., Perron, A., Vines, L., and Varley, J.B., Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3, APL Mater., 2019, vol. 7, no. 2, p. 22510. https://doi.org/10.1063/1.5054826

    Article  CAS  Google Scholar 

  7. Yoon, Y., Kim, S., Lee, I.G., Cho, B.J., and Hwang, W.S., Electrical and photocurrent properties of a polycrystalline Sn-doped β-Ga2O3 thin film, Mater. Sci. Semicond. Process., 2021, vol. 121, p. 105430. https://doi.org/10.1016/j.mssp.2020.105430

    Article  CAS  Google Scholar 

  8. Mcglone, J.F., Xia, Z., Zhang, Y., Joishi, C., Lodha, S., Rajan, S., Ringel, S.A., and Arehart, A.R., Trapping effects in Si-doped-Ga2O3 MESFETs on an Fe-doped-Ga2O3 substrate, IEEE Electron Device Lett., 2018, vol. 39, no. 7, pp. 1042–1045. https://doi.org/10.1109/LED.2018.2843344

    Article  ADS  CAS  Google Scholar 

  9. Polyakov, A.Y., Smirnov, N.B., Shchemerov, I.V., Chernykh, S.V., Oh, S., Pearton, S.J., Ren, F., Kochkova, A.I., and Kim, J., Defect states determining dynamic trapping-detrapping in β-Ga2O3 field-effect transistors, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 7, p. Q3013. https://doi.org/10.1149/2.0031907jss

    Article  CAS  Google Scholar 

  10. Xu, J., Zheng, W., and Huang, F., Gallium oxide solar-blind ultraviolet photodetectors: A review, J. Mater. Chem. C, 2019, vol. 7, no. 29, pp. 8753–8770. https://doi.org/10.1039/C9TC02055A

    Article  CAS  Google Scholar 

  11. Yakimov, E.B., Polyakov, A.Y., Shchemerov, I.V., Smirnov, N.B., Vasilev, A.A., Vergeles, P.S., Yakimov, E.E., Chernykh, A.V., Shikoh, A.S., Ren, F., and Pearton, S.J., Photosensitivity of Ga2O3 Schottky diodes: Effects of deep acceptor traps present before and after neutron irradiation, APL Mater., 2020, vol. 8, no. 11, p. 111105. https://doi.org/10.1063/5.0030105

    Article  ADS  CAS  Google Scholar 

  12. Yakimov, E.B., Polyakov, A.Y., Shchemerov, I.V., Smirnov, N.B., Vasilev, A.A., Kochkova, A.I., Vergeles, P.S., Yakimov, E.E., Chernykh, A.V., Minghan, X., Ren, F., and Pearton, S.J., On the nature of photosensitivity gain in Ga2O3 Schottky diode detectors: Effects of hole trapping by deep acceptors, J. Alloys Compd., 2021, vol. 879, p. 160394. https://doi.org/10.1016/j.jallcom.2021.160394

    Article  CAS  Google Scholar 

  13. Oh, S., Jung, Y., Mastro, M.A., Hite, J.K., Eddy, C.R., and Kim, J., Development of solar-blind photodetectors based on Si-implanted β-Ga2O3, Opt. Express, 2015, vol. 23, no. 22, pp. 28300–28305. https://doi.org/10.1364/OE.23.028300

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Meng, D.D., Ji, X.Q., Wang, D.F., and Chen, Z.W., Enhancement of responsivity in solar-blind UV detector with back-gate MOS structure fabricated on β-Ga2O3 films, Front. Mater., 2021, vol. 8, p. 672128. https://doi.org/10.3389/fmats.2021.672128

    Article  Google Scholar 

  15. Tak, B.R., Yang, M.-M., Alexe, M., and Singh, R., Deep-level traps responsible for persistent photocurrent in pulsed-laser-deposited β-Ga2O3 thin films, Crystals, 2021, vol. 11, no. 9, p. 1046. https://doi.org/10.3390/cryst11091046

    Article  CAS  Google Scholar 

  16. Polyakov, A.Y., Smirnov, N.B., Shchemerov, I.V., Pearton, S.J., Ren, F., Chernykh, A.V., Lagov, P.B., and Kulevoy, T.V., Hole traps and persistent photocapacitance in proton irradiated β-Ga2O3 films doped with Si, APL Mater., 2018, vol. 6, no. 9, p. 96102. https://doi.org/10.1063/1.5042646

    Article  CAS  Google Scholar 

  17. Yakovlev, N.N., Almaev, A.V., Butenko, P.N., Mikhaylov, A.N., Pechnikov, A.I., Stepanov, S.I., Timashov, R.B., Chikiryaka, A.V., and Nikolaev, V.I., Effect of Si+ ion irradiation of α-Ga2O3 epitaxial layers on their hydrogen sensitivity, Mater. Phys. Mech., 2022, vol. 48, no. 3, pp. 301–307. https://doi.org/10.18149/MPM.4832022_1

    Article  CAS  Google Scholar 

  18. Dobaczewski, L., Peaker, A.R., and Bonde, N.K., Laplace-transform deep-level spectroscopy: The technique and its applications to the study of point defects in semiconductors, J. Appl. Phys., 2004, vol. 96, no. 9, pp. 4689–4728. https://doi.org/10.1063/1.1794897

    Article  ADS  CAS  Google Scholar 

  19. Zheng, X., Feng, S., Zhang, Y., and Yang, J., Identifying the spatial position and properties of traps in GaN HEMTs using current transient spectroscopy, Microelectron. Reliab., 2016, vol. 63, pp. 46–51. https://doi.org/10.1016/j.microrel.2016.05.001

    Article  CAS  Google Scholar 

  20. Aoki, Y., Wiemann, C., Feyer, V., Kim, H.-S., Schneider, C.M., Ill-Yoo, H., and Martin, M., Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour, Nat. Commun., 2014, vol. 5, p. 3473. https://doi.org/10.1038/ncomms4473

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Polyakov, A.Y., Smirnov, N.B., Shchemerov, I.V., Lee, I.-H., Jang, T., Dorofeev, A.A., Gladysheva, N.B., Kondratyev, E.S., Turusova, Y.A., Zinovyev, R.A., Turutin, A.V., Ren, F., and Pearton, S.J., Current relaxation analysis in AlGaN/GaN high electron mobility transistors, J. Vac. Sci. Technol. B, 2017, vol. 35, no. 1, p. 11207. https://doi.org/10.1116/1.4973973

    Article  CAS  Google Scholar 

  22. Mitrofanov, O. and Manfra, M., Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors, Superlattices Microstruct., 2003, vol. 34, nos. 1–2, pp. 33–53. https://doi.org/10.1016/j.spmi.2003.12.002

    Article  ADS  CAS  Google Scholar 

  23. Polyakov, A., Nikolaev, V., Stepanov, S., Almaev, A., Pechnikov, A., Yakimov, E., Kushnarev, B.O., Shchemerov, I., Scheglov, M., Chernykh, A., Vasilev, A., Kochkova, A., and Pearton, S.J., Electrical properties of α-Ga2O3 films grown by halide vapor phase epitaxy on sapphire with α-Cr2O3 buffers, J. Appl. Phys., 2022, vol. 131, no. 21, p. 215701. https://doi.org/10.1063/5.0090832

    Article  ADS  CAS  Google Scholar 

  24. Polyakov, A.Y., Nikolaev, V.I., Tarelkin, S.A., Pechnikov, A.I., Stepanov, S.I., Nikolaev, A.E., Shchemerov, I.V., Yakimov, E.B., Luparev, N.V., Kuznetsov, M.S., Vasilev, A.A., Kochkova, A.I., Voronova, M.I., Scheglov, M.P., Kim, J., and Pearton, S.J., Electrical properties and deep trap spectra in Ga2O3 films grown by halide vapor phase epitaxy on p-type diamond substrates, J. Appl. Phys., 2021, vol. 129, no. 18, p. 185701. https://doi.org/10.1063/5.0044531

    Article  ADS  CAS  Google Scholar 

  25. Polyakov, A.Y., Nikolaev, V.I., Stepanov, S.I., Pechnikov, A.I., Yakimov, E.B., Smirnov, N.B., Shchemerov, I.V., Vasilev, A.A., Kochkova, A.I., Chernykh, A.V., and Pearton, S.J., Editors’ choice -electrical properties and deep traps in α-Ga2O3:Sn films grown on sapphire by halide vapor phase epitaxy, ECS J. Solid State Sci. Technol., 2020, vol. 9, no. 4, p. 45003. https://doi.org/10.1149/2162-8777/ab89bb

    Article  CAS  Google Scholar 

  26. Kim, J., Pearton, S.J., Fares, C., Yang, J., Ren, F., Kim, S., and Polyakov, A.Y., Radiation damage effects in Ga2O3 materials and devices, J. Mater. Chem. C, 2018, vol. 7, no. 1, pp. 10–24. https://doi.org/10.1039/c8tc04193h

    Article  CAS  Google Scholar 

  27. Polyakov, A.Y., Nikolaev, V.I., Meshkov, I.N., Siemek, K., Lagov, P.B., Yakimov, E.B., Pechnikov, A.I., Orlov, O.S., Sidorin, A.A., Stepanov, S.I., Shchemerov, I.V., Vasilev, A.A., Chernykh, A.V., Losev, A.A., Miliachenko, A.D., Khrisanov, I.A., Pavlov, Yu.S., Kobets, U.A., and Pearton, S.J., Point defect creation by proton and carbon irradiation of α-Ga2O3, J. Appl. Phys., 2022, vol. 132, no. 3, p. 35701. https://doi.org/10.1063/5.0100359

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 22-72-00010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Schemerov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schemerov, I.V., Polyakov, A.Y., Almaev, A.V. et al. Study of the Abnormally High Photocurrent Relaxation Time in α-Ga2O3-Based Schottky Diodes. Russ Microelectron 52, 827–834 (2023). https://doi.org/10.1134/S106373972308005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106373972308005X

Keywords:

Navigation