Skip to main content
Log in

Peculiarities of the Kinetics of Heterogeneous Processes during the Etching of Silicon in CF4 and C2Br2F4 Plasma

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

A comparative study of the parameters of the plasma discharge and kinetics of heterogeneous processes (etching, polymerization) occurring on the silicon surface in CF4 and C2Br2F4 plasma is carried out. Plasma diagnostics using Langmuir probes and optical emission spectroscopy show that both systems are characterized by similar dependences of the concentrations of ions and fluorine atoms on the gas pressure. It is established that (a) the kinetics of polymerization corresponds to the radical ion mechanism of this process; and (b) the fundamental properties of C2Br2F4 plasma are a combination of the higher polymerization ability (stationary polymer film thickness) and etching rate. The latter fact does not agree with the differences in the flux densities of fluorine atoms from plasma, but may be due to the additional generation of active fluorine in a thick polymer layer under the action of ion bombardment. Assumptions are made about the mechanisms of the processes that cause a change in the effective probability of the interaction and yield of etching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Nojiri, K., Dry Etching Technology for Semiconductors, Tokyo: Springer Int., 2015.

    Book  Google Scholar 

  2. Wolf, S. and Tauber, R.N., Silicon Processing for the VLSI Era, vol. 1: Process Technology, New York: Lattice, 2000.

    Google Scholar 

  3. Coburn, J.W., Plasma Etching and Reactive Ion Etching, New York: AVS Monograph Series, 1982.

    Google Scholar 

  4. Roosmalen, J., Baggerman, J.A.G., and Brader, S.J., Dry Etching for VLSI, New York: Plenum, 1991.

    Book  Google Scholar 

  5. Rudenko, K.V., Miakonkikh, A.V., and Orlikovsky, A.A. Plasma Etching of poly-Si/SiO2/Si Structures: Langmuir-Probe and Optical-Emission-Spectroscopy Monitoring, Russ. Microelectron., 2007, vol. 36, no. 3, pp. 179–192.

  6. Kay, E., Coburn, J., and Dilks, A., Plasma chemistry of fluorocarbons as related to plasma etching and plasma polymerization, in Plasma Chemistry III, Veprek, S. and Venugopalan, M., Eds., Vol. 94 of Topics in Current Chemistry, Berlin: Springer, 1980.

  7. Stoffels, W.W., Stoffels, E., and Tachibana, K., Polymerization of fluorocarbons in reactive ion etching plasmas, J. Vac. Sci. Technol., A., 1998, vol. 16, pp. 87–95.

    Article  Google Scholar 

  8. Standaert, T.E.F.M., Hedlund, C., Joseph, E.A., Oehrlein, G.S., and Dalton, T.J., Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride, and amorphous hydrogenated silicon carbide, J. Vac. Sci. Technol., A., 2004, vol. 22, pp. 53–60.

    Article  Google Scholar 

  9. Efremov, A., Lee, B.J., and Kwon, K.-H., On relationships between gas-phase chemistry and reactive-ion etching kinetics for silicon-based thin films (SiC, SiO2 and SixNy) in multi-component fluorocarbon gas mixtures, Materials, 2021, vol. 14, p. 1432.

  10. Efremov, A.M., Murin, D.B., and Kwon, K.-H., Concerning the effect of type of fluorocarbon gas on the output characteristics of the reactive-ion etching process, Russ. Microelectron., 2020, vol. 49, no. 3, pp. 157–165.

    Article  Google Scholar 

  11. Matsui, M., Tatsumi, T., and Sekine, M., Relationship of etch reaction and reactive species flux in C4F8–Ar–O2 plasma for SiO2 selective etching over Si and Si3N4, J. Vac. Sci. Technol., A, 2001, vol. 19, pp. 2089–2096.

    Article  Google Scholar 

  12. Li, X., Ling, L., Hua, X., Fukasawa, M., Oehrlein, G.S., Barela, M., and Anderson, H.M., Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas, J. Vac. Sci. Technol., A, 2003, vol. 21, pp. 284–293.

    Article  Google Scholar 

  13. Matsuo, S., Selective etching of Si relative to SiO2 without undercutting by CBrF3 plasma, Appl. Phys. Lett., 1980, vol. 36, pp. 768–773.

    Article  Google Scholar 

  14. Engelhardt, M. and Schwarz, S., A new CBrF3 process for etching tapered trenches in silicon, J. Electrochem. Soc., 1987, vol. 134, pp. 1985–1992.

    Article  Google Scholar 

  15. Flamm, D.L., Cowan, P.L., and Golovchenko, J.A., Etching and film formation in CF3Br plasmas: Some qualitative observations and their general implications, J. Vac. Sci. Technol., 1980, vol. 17, pp. 1341–1348.

    Article  Google Scholar 

  16. Lopaev, D.V., Mankelevich, Yu.A., Rakhimova, T.V., Zotovich, A.I., Zyryanov, S.M., and Baklanov, M.R., Damage and etching of ultra low-k materials in fluorocarbon plasma at lowered temperatures, J. Phys. D: Appl. Phys., 2017, vol. 50, p. 485202.

    Article  Google Scholar 

  17. Rezvanov, A., Miakonkikh, A.V., Vishnevskiy, A.S., Rudenko, K.V., and Baklanov, M.R., Cryogenic etching of porous low-k dielectrics in CF3Br and CF4 plasmas, J. Vac. Sci. Technol., B, 2017, vol. 35, p. 021204.

    Article  Google Scholar 

  18. Lim, N., Choi, Y.S., Efremov, A., and Kwon, K.-H., Dry etching performance and gas-phase parameters of C6F12O + Ar plasma in comparison with CF4 + Ar, Materials, 2021, vol. 14, p. 1595.

  19. Lim, N., Efremov, A., Woo, B., and Kwon, K.-H., Comparative study of CF4 + O2 and C6F12O + O2 plasmas for reactive-ion etching applications, Plasma Proces. Polym., 2022, vol. 19, p. 2100129.

  20. Shun’ko, E.V., Langmuir Probe in Theory and Practice, Boca Raton: Universal, 2008.

    Google Scholar 

  21. Miakonkikh, A., Kuzmenko, V., Efremov, A., and Rudenko, K., A comparison of CF4, CBrF3 and C2Br2F4 plasmas: Physical parameters and densities of atomic species, Vacuum, 2022, vol. 200, p. 110991.

    Article  Google Scholar 

  22. Lopaev, D.V., Volynets, A.V., Zyryanov, S.M., Zotovich, A.I., and Rakhimov, A.T., Actinometry of O, N and F atoms, J. Phys. D: Appl. Phys., 2017, vol. 50, p. 075202.

    Article  Google Scholar 

  23. Handbook of Chemistry and Physics, Boca Raton, FL: CRC, 1998.

  24. Kimura, T. and Ohe, K., Probe measurements and global model of inductively coupled Ar/CF4 discharges, Plasma Sources Sci. Technol., 1999, vol. 8, pp. 553–560.

    Article  Google Scholar 

  25. Efremov, A., Lee, J., and Kwon, K.-H., A comparative study of CF4, Cl2 and HBr + Ar inductively coupled plasmas for dry etching applications, Thin Solid Films, 2017, vol. 629, pp. 39–48.

    Article  Google Scholar 

  26. Chun, I., Efremov, A., Yeom, G.Y., and Kwon, K.-H., A comparative study of CF4/O2/Ar and C4F8/O2/Ar plasmas for dry etching applications, Thin Solid Films, 2015, vol. 579, pp. 136–143.

    Article  Google Scholar 

  27. Serdyuk, N.K., Gutorov, V.V., and Panfilov, V.N., Studies of the reactions of Br(2P3/2) and Br(2P1/2) with SiH4, React. Kinet. Catal. Lett., 1981, vol. 16, pp. 393–397.

    Article  Google Scholar 

  28. Kota, G.P., Coburn, G.W., and Graves, D.B., Heterogeneous recombination of atomic fluorine and bromine, J. Vac. Sci. Technol., A, 1999, vol. 17, pp. 282–291.

    Article  Google Scholar 

  29. NIST Chemical Kinetics Database. https://kinetics.nist.gov/kinetics/index.jsp. Accessed June 28, 2022.

  30. Kimura, T. and Ohe, K., Model and probe measurements of inductively coupled CF4 discharges, J. Appl. Phys., 2002, vol. 92, pp. 1780–1787.

    Article  Google Scholar 

  31. Vitale, S.A., Chae, H., and Sawin, H.H., Silicon etching yields in F2, Cl2, Br2, and HBr high density plasmas, J. Vac. Sci. Technol., A, 2001, vol. 19, pp. 2197–2206.

    Article  Google Scholar 

  32. Belen, R.J., Gomez, S., Kiehlbauch, M., and Aydil, E.S., Feature scale model of Si etching in SF6/O2/HBr plasma and comparison with experiments, J. Vac. Sci. Technol., A, 2006, vol. 24, pp. 350–361.

    Article  Google Scholar 

  33. Jin, W., Vitale, S.A., and Sawin, H.H., Plasma-surface kinetics and simulation of feature profile evolution in Cl2 + HBr etching of polysilicon, J. Vac. Sci. Technol., A, 2002, vol. 20, pp. 2106–2114.

    Article  Google Scholar 

  34. Efremov, A.M., Betelin, V.B., Mednikov, K.A., and Kwon, K.-H., Gas-phase parameters and reactive-ion etching regimes for Si and SiO2 in binary Ar + CF4/C4F8 mixtures, Chem. Chem. Tech., 2021, vol. 64, no. 6, pp. 25–34.

    Google Scholar 

  35. Tachi, S. and Okudaira, S., Chemical sputtering of silicon by F+, Cl+, and Br+ ions: Reactive spot model for reactive ion etching, J. Vac. Sci. Technol., B, 1986, vol. 4, pp. 459–487.

    Article  Google Scholar 

  36. A Simple Sputter Yield Calculator. http://www.iap.tuwien. ac.at/www/surface/sputteryield. Accessed June 28, 2022.

Download references

Funding

The study was carried out as part of a state assignment of Valiev Institute of Physics and Technology, Russian Academy of Sciences under the Ministry of Education and Science of the Russian Federation on topic no. FFNN-2022-0019, and was partially supported by RFBR grant 20-07-00832A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Miakonkikh.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miakonkikh, A.V., Kuzmenko, V.O., Efremov, A.M. et al. Peculiarities of the Kinetics of Heterogeneous Processes during the Etching of Silicon in CF4 and C2Br2F4 Plasma. Russ Microelectron 51, 505–511 (2022). https://doi.org/10.1134/S1063739722700032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739722700032

Keywords:

Navigation